Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanolasers grown on silicon

Abstract

The integration of optical interconnects with silicon-based electronics can address the growing limitations facing chip-scale data transport as microprocessors become progressively faster. However, until now, material lattice mismatch and incompatible growth temperatures have fundamentally limited monolithic integration of lasers onto silicon substrates. Here, we use a novel growth scheme to overcome this roadblock and directly grow on-chip InGaAs nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic integration. Unique helically propagating cavity modes are used to strongly confine light within subwavelength nanopillars despite the low refractive index contrast between InGaAs and silicon. These modes therefore provide an avenue for engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are as-grown on silicon, offer tiny footprints and scalability, and are thus particularly suited to high-density optoelectronics. They may ultimately form the basis of future monolithic light sources needed to bridge the existing gap between photonic and electronic circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: InGaAs/GaAs heterostructure nanopillar lasers monolithically grown on silicon.
Figure 2: On-chip nanopillar laser oscillation.
Figure 3: Helically propagating modes for optical feedback of on-chip nanolasers.
Figure 4: Effects of nanopillar sidewall taper on optical modes.
Figure 5: Wavelength control of nanopillar lasers by composition variation.

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    ADS  Article  Google Scholar 

  2. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  3. Chen, G. et al. Predictions of CMOS compatible on-chip optical interconnect. Integr. VLSI J. 40, 434–446 (2007).

    Article  Google Scholar 

  4. Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

    ADS  Article  Google Scholar 

  5. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    ADS  Article  Google Scholar 

  6. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    ADS  Article  Google Scholar 

  7. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    ADS  Article  Google Scholar 

  8. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Article  Google Scholar 

  9. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    ADS  Article  Google Scholar 

  10. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    ADS  Article  Google Scholar 

  11. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    ADS  Article  Google Scholar 

  12. Lo, Y. H., Bhat, R., Hwang, D. M., Chua, C. & Lin, C.-H. Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement. Appl. Phys. Lett. 62, 1038–1040 (1993).

    ADS  Article  Google Scholar 

  13. Chen, H. Z., Ghaffari, A., Wang, H., Morkoc, H. & Yariv, A. Low-threshold (600 A/cm2 at room temperature) GaAs/AlGaAs lasers on Si (100). Appl. Phys. Lett. 51, 1320–1321 (1987).

    ADS  Article  Google Scholar 

  14. Groenert, M. E. et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J. Appl. Phys. 93, 362–367 (2003).

    ADS  Article  Google Scholar 

  15. Ujiie, Y. & Nishinaga, T. Epitaxial lateral overgrowth of GaAs on a Si Substrate. Jpn J. Appl. Phys. 28, L337–L339 (1989).

    ADS  Article  Google Scholar 

  16. Olsson, F., Xie, M., Lourdudoss, S., Prieto, I. & Postigo, P. A. Epitaxial lateral overgrowth of InP on Si from nano-openings: theoretical and experimental indication for defect filtering throughout the grown layer. J. Appl. Phys. 104, 093112 (2008).

    ADS  Article  Google Scholar 

  17. Moewe, M., Chuang, L. C., Crankshaw, S., Chase, C. & Chang-Hasnain, C. Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon. Appl. Phys. Lett. 93, 023116 (2008).

    ADS  Article  Google Scholar 

  18. Moewe, M., Chuang, L. C., Crankshaw, S., Ng, K. W. & Chang-Hasnain, C. Core–shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. Opt. Express 17, 7831–7836 (2009).

    ADS  Article  Google Scholar 

  19. Chen, R. et al. Second-harmonic generation from a single wurtzite GaAs nanoneedle. Appl. Phys. Lett. 96, 051110 (2010).

    ADS  Article  Google Scholar 

  20. Chuang, L. C. et al. InGaAs QW nanopillar light emitting diodes monolithically grown on a Si substrate. Conference on Lasers and Electro-Optics, CMFF6 (OSA, 2010).

    Google Scholar 

  21. Chuang, S. L. Physics of Optoelectronic Devices 337–393 (Wiley, 1995).

    Google Scholar 

  22. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits 185–261 (Wiley, 1995).

    Google Scholar 

  23. Baba, T. Photonic crystals and microdisk cavities based on GaInAsP-InP system. IEEE J. Sel. Top. Quant. Electron. 3, 808–830 (1997).

    ADS  Article  Google Scholar 

  24. Bjork, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quant. Electron. 27, 2386–2396 (1991).

    ADS  Article  Google Scholar 

  25. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    ADS  Article  Google Scholar 

  26. Nobis, T. & Grundmann, M. Low-order optical whispering-gallery modes in hexagonal nanocavities. Phys. Rev. A 72, 063806 (2005).

    ADS  Article  Google Scholar 

  27. Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 67, 023807 (2003).

    ADS  Article  Google Scholar 

  28. Chen, R., Chuang, L. C., Tran, T., Moewe, M. & Chang-Hasnain, C. Spatially resolved, polarized photoluminescence from wurtzite InGaAs/GaAs nanoneedles. Conference on Lasers and Electro-Optics, JWA95 (OSA, 2010).

    Google Scholar 

  29. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    ADS  Article  Google Scholar 

  30. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Article  Google Scholar 

  31. Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    ADS  Article  Google Scholar 

  32. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    ADS  Article  Google Scholar 

  33. Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal–optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    ADS  Article  Google Scholar 

  34. Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).

    ADS  Article  Google Scholar 

  35. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

    ADS  Article  Google Scholar 

  36. Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    ADS  Article  Google Scholar 

  37. Kawachi, M. Silica waveguides on silicon and their application to integrated-optic components. Opt. Quant. Electron. 22, 391–416 (1990).

    Article  Google Scholar 

  38. Suzuki, S., Shuto, K. & Hibino, Y. Integrated-optic ring resonators with two stacked layers of silica waveguide on Si. IEEE Photon. Tech. Lett. 4, 1256–1258 (1992).

    ADS  Article  Google Scholar 

  39. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    ADS  Article  Google Scholar 

  40. Ando, S., Kobayashi, N. & Ando, H. Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition. Jpn J. Appl. Phys. 34, L4–L6 (1995).

    ADS  Article  Google Scholar 

  41. Choi, S. J., Djordjev, K., Choi, S. J. & Dapkus, P. D. Microdisk lasers vertically coupled to output waveguides. IEEE Photon. Tech. Lett. 15, 1330–1332 (2003).

    ADS  Article  Google Scholar 

  42. Taillaert, D. et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quant. Electron. 38, 949–955 (2002).

    ADS  Article  Google Scholar 

  43. Mahler, L. et al. Vertically emitting microdisk lasers. Nature Photon. 3, 46–49 (2009).

    ADS  Article  Google Scholar 

  44. Koseki, S., Zhang, B., De Greve, K. & Yamamoto, Y. Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides. Appl. Phys. Lett. 94, 051110 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) University Photonics Research (UPR) Award HR0011-04-1-0040, Microelectronics Advanced Research Corp (MARCO) Interconnect Focus Center (IFC) and the Department of Defense (DoD) National Security Science and Engineering Faculty Fellowship. C.C.H. acknowledges support from the Chang Jiang Scholar Endowed Chair Professorship at Tsinghua University, China, and the Li Ka Shing Foundation Women in Science Research Grants. R.C. acknowledges support from a National Defense Science and Engineering Graduate Fellowship. The authors thank Cun-Zheng Ning and E.K. Lau for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.C.H. proposed and guided the overall project. R.C., T.-T.D.T, K.W.N. and C.C.H. designed the experiments. R.C. and T.-T.D.T. performed optical measurements. K.W.N., W.S.K. and L.C.C. developed and performed material growth. K.W.N. and W.S.K. performed SEM measurements. R.C., T.-T.D.T. and F.G.S. studied and simulated the optical mode. R.C. performed gain modelling and rate equation analysis. R.C. and C.C.H. composed the manuscript.

Corresponding author

Correspondence to Connie Chang-Hasnain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, R., Tran, TT., Ng, K. et al. Nanolasers grown on silicon. Nature Photon 5, 170–175 (2011). https://doi.org/10.1038/nphoton.2010.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing