Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres

Abstract

Scanning probe microscopy methods1,2 can image samples with extremely high resolutions, opening up a wide range of applications in physics3, chemistry4 and biology5. However, these passive techniques, which trace the sample surface softly, give indirect topographic information. Here, we show an active imaging technique that has the potential to achieve optically a molecular resolution by directly interacting and perturbing the sample molecules. This technique makes use of an external pressure, applied selectively on a nanometric volume of the sample through the apex of a sharp nanotip, to obtain a local distortion of only those molecules that are pressurized. The vibrational frequencies of these molecules are distinctly different from those of unpressurized molecules. By sensing this difference, our active microscopic technique can achieve extremely high resolution. Using an isolated single-walled carbon nanotube and a two-dimensional adenine nanocrystal, we demonstrate a spatial resolution of 4 nm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Extremely high spatial resolution in optical microscopy is achieved by sensing the localized pressure applied by a nanosized tip.
Figure 2: Slight local deformation in a SWNT due to tip-applied pressure is sensed by means of Raman spectra.
Figure 3: One-dimensional optical image of a SWNT at extremely high spatial resolution.
Figure 4: Reversible and irreversible Raman intensity responses determine the threshold value of the tip-applied force for plastic deformation.
Figure 5: High spatial resolution for a two-dimensional nanocrystal of adenine.

References

  1. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si (111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1982).

    Article  ADS  Google Scholar 

  2. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  Google Scholar 

  3. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  ADS  Google Scholar 

  4. Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994).

    Article  ADS  Google Scholar 

  5. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  ADS  Google Scholar 

  6. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  ADS  Google Scholar 

  7. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  8. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  ADS  Google Scholar 

  9. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  10. Zenhausern, F., Oboyle, M. P. & Wickramasinghe, H. K. Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994).

    Article  ADS  Google Scholar 

  11. Bachelot, R., Gleyzes, P. & Boccara, A. C. Near-field optical microscope based on local perturbation of a diffraction spot. Opt. Lett. 20, 1924–1926 (1995).

    Article  ADS  Google Scholar 

  12. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    Article  ADS  Google Scholar 

  13. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  ADS  Google Scholar 

  14. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    Article  ADS  Google Scholar 

  15. Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

    Article  ADS  Google Scholar 

  16. Zhang, W. H., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  Google Scholar 

  17. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning probe Raman spectroscopy with single molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  ADS  Google Scholar 

  18. Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

    Article  ADS  Google Scholar 

  19. Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y. & Kawata, S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging. Phys. Rev. Lett. 92, 220801 (2004).

    Article  ADS  Google Scholar 

  20. Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  ADS  Google Scholar 

  21. Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).

    Article  Google Scholar 

  22. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  Google Scholar 

  23. Hillenbrand, R. & Keilmann, F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10-nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25–27 (2002).

    Article  ADS  Google Scholar 

  24. Ichimura, T. et al. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J. Phys. Chem. C 111, 9460–9464 (2007).

    Article  Google Scholar 

  25. Verma, P., Yamada, K., Watanabe, H., Inouye, Y. & Kawata, S. Near-field Raman scattering investigation of tip effects on C60 molecules. Phys. Rev. B 73, 045416 (2006).

    Article  ADS  Google Scholar 

  26. Yano, T., Inouye, Y. & Kawata, S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near field Raman spectra. Nano Lett. 6, 1269–1273 (2006).

    Article  ADS  Google Scholar 

  27. Ichimura, T. et al. Subnanometric near-field Raman investigation in the vicinity of the metallic nanostructure. Phys. Rev. Lett. 102, 186101 (2009).

    Article  ADS  Google Scholar 

  28. Reich, S., Thomsen, C. & Ordejón, P. Phonon eigenvectors of chiral nanotubes. Phys. Rev. B 64, 195416 (2001).

    Article  ADS  Google Scholar 

  29. Boresi, A. P. & Sidebottom, O. M. Advanced Mechanics of Materials (John Wiley & Sons, 1985).

    MATH  Google Scholar 

  30. Saito, T. et al. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 109, 10647–10652 (2005).

    Article  Google Scholar 

  31. Saito, T. et al. Supermolecular catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 110, 5849–5853 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Inouye (Osaka University, Japan) for fruitful discussions, S. Fujii and F. Futamatsu (Osaka University, Japan) for their valuable help during some of the experiments, and T. Saito (Advanced Industrial Science and Technology, Japan) for supplying the high-quality SWNTs used in the present study. This research was financially supported by the Core Research for Educational Science and Technology (CREST) project of Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taka-aki Yano or Prabhat Verma.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yano, Ta., Verma, P., Saito, Y. et al. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photon 3, 473–477 (2009). https://doi.org/10.1038/nphoton.2009.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing