Letter | Published:

A highly efficient single-photon source based on a quantum dot in a photonic nanowire

Nature Photonics volume 4, pages 174177 (2010) | Download Citation

Abstract

The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication, optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2,3,4 or a semiconductor quantum dot5,6,7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9,10,11,12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire with carefully tailored ends13. Under optical pumping, we demonstrate a record source efficiency of 0.72, combined with pure single-photon emission. This non-resonant approach also provides broadband spontaneous emission control, thus offering appealing novel opportunities for the development of single-photon sources based on spectrally broad emitters, wavelength-tunable sources or efficient sources of entangled photon pairs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

  2. 2.

    , , & Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

  3. 3.

    , , & Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

  4. 4.

    et al. Fabrication of single nickel–nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86, 131926 (2005).

  5. 5.

    & Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089–2095 (1999).

  6. 6.

    et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

  7. 7.

    , , , & Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

  8. 8.

    et al. Solid-state single photon sources: light collection strategies. Eur. Phys. J. D 18, 197–210 (2002).

  9. 9.

    et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

  10. 10.

    , , , & Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  11. 11.

    et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

  12. 12.

    et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

  13. 13.

    et al. Solid-state single photon sources: the nanowire antenna. Opt. Express 17, 2095–2110 (2009).

  14. 14.

    et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

  15. 15.

    et al. A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. Physica E 13, 418–422 (2002).

  16. 16.

    Optical microcavities. Nature 423, 839–846 (2003).

  17. 17.

    , & Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2009).

  18. 18.

    et al. Photonic-wire laser. Phys. Rev. Lett. 75, 2678–2681 (1995).

  19. 19.

    , & Very large spontaneous-emission beta factors in photonic-crystal waveguides. Phys. Rev. Lett. 99, 023902 (2007).

  20. 20.

    et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

  21. 21.

    , , & Broadband enhancement of light emission in silicon slot waveguides. Opt. Express 17, 7479–7490 (2009).

  22. 22.

    et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

  23. 23.

    , , & Optically bright quantum dots in single nanowires. Nano Lett. 5, 1439–1443 (2005).

  24. 24.

    & Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004).

  25. 25.

    , , , & Controlling the emission profile of a nanowire with a conical taper. Opt. Lett. 33, 1693–1695 (2008).

  26. 26.

    et al. Efficient photonic mirrors for semiconductor nanowires. Opt. Lett. 33, 2635–2637 (2008).

  27. 27.

    et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

  28. 28.

    et al. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009).

  29. 29.

    et al. Explanation of photon correlation in the far-off-resonance optical emission from a quantum-dot-cavity system. Phys. Rev. Lett. 103, 207403 (2009).

  30. 30.

    , , , & Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103, 053601 (2009).

Download references

Acknowledgements

The authors acknowledge the pioneering experimental work of R. Hahner and Y.-R. Nowicki-Bringuier, as well as stimulating discussion with I. Friedler, B. Gayral, J.-P. Hugonin, G. Lecamp, J. Mørk and T.R. Nielsen. The work was supported financially by IST-FET European project QPhoton (J.C., J.M.G. and N.G.), ‘Nanosciences aux limites de la Nanoélectronique’ Fundation (J.C. and N.S.M.), Danish Research Council for Technology and Production (N.G.) and NanoEPR project of the 2006 NanoSci-ERA European programm (C.S. and P.L.). Sample fabrication was carried out in the ‘Plateforme technologique amont’ and CEA LETI MINATEC/DOPT clean rooms.

Author information

Author notes

    • Julien Claudon

    These authors contributed equally to this work

Affiliations

  1. CEA-CNRS-UJF group ‘Nanophysique et Semiconducteurs’, CEA, INAC, SP2M, F-38054 Grenoble, France

    • Julien Claudon
    • , Joël Bleuse
    • , Nitin Singh Malik
    • , Maela Bazin
    • , Périne Jaffrennou
    •  & Jean-Michel Gérard
  2. DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Building 343, DK-2800 Kongens Lyngby, Denmark

    • Niels Gregersen
  3. Laboratoire Charles Fabry de l'Institut d'Optique, CNRS, Université Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau, France

    • Christophe Sauvan
    •  & Philippe Lalanne

Authors

  1. Search for Julien Claudon in:

  2. Search for Joël Bleuse in:

  3. Search for Nitin Singh Malik in:

  4. Search for Maela Bazin in:

  5. Search for Périne Jaffrennou in:

  6. Search for Niels Gregersen in:

  7. Search for Christophe Sauvan in:

  8. Search for Philippe Lalanne in:

  9. Search for Jean-Michel Gérard in:

Contributions

J.C., N.S.M. and M.B. fabricated the sample. J.B. and P.J. conducted the optical characterizations. N.G., C.S. and P.L. provided theoretical modelling. J.M.G. supervised the project. J.C, J.B. and J.M.G. wrote the paper. All authors commented on the results and the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Julien Claudon or Joël Bleuse.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.287x

Further reading