Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of molecular hot electroluminescence by resonant nanocavity plasmons

Abstract

Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale1,2 and the development of plasmonic devices3,4,5. Despite the various vibronic transitions (S1(v′) → S0(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S1(0)) (refs 610). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S1(v′ > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electronic decoupling for molecular fluorescence from local STM cavities.
Figure 2: Upconversion electroluminescence of molecules with unusual hot luminescence.
Figure 3: Shaping emission spectra of molecules by resonant NCP.
Figure 4: Bias and current dependence of molecular junction electroluminescence.

References

  1. Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Google Scholar 

  2. Greffet, J.-J. Nanoantennas for light emission. Science 308, 1561–1563 (2005).

    Article  Google Scholar 

  3. Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000).

    ADS  Article  Google Scholar 

  4. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  5. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    ADS  Article  Google Scholar 

  6. Kühn, S., Håkanson, U. H., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    ADS  Article  Google Scholar 

  7. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    ADS  Article  Google Scholar 

  8. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    ADS  Article  Google Scholar 

  9. Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    ADS  Article  Google Scholar 

  10. Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).

    ADS  Article  Google Scholar 

  11. Rebane, K. & Saari, P. Hot luminescence and relaxation processes in resonant secondary emission of solid matter. J. Lumin. 16, 223–243 (1978).

    Article  Google Scholar 

  12. Ritchie, G. & Burstein, E. Luminescence of dye molecules adsorbed at a Ag surface. Phys. Rev. B 24, 4843–4846 (1981).

    ADS  Article  Google Scholar 

  13. Le Ru, E. C. et al. Mechanisms of spectral profile modification in surface-enhanced fluorescence. J. Phys. Chem. C 111, 16076–16079 (2007).

    Article  Google Scholar 

  14. Aizpurua, J., Hoffmann, G., Apell, S. P. & Berndt, R. Electromagnetic coupling on an atomic scale. Phys. Rev. Lett. 89, 156803 (2002).

    ADS  Article  Google Scholar 

  15. Johansson, P. Light emission from a scanning tunneling microscope: fully retarded calculation. Phys. Rev. B 58, 10823–10834 (1998).

    ADS  Article  Google Scholar 

  16. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    ADS  Article  Google Scholar 

  17. Dong, Z. C. et al. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett. 92, 086801 (2004).

    ADS  Article  Google Scholar 

  18. Ćavar, E. et al. Fluorescence and phosphorescence from individual C60 molecules excited by local electron tunneling. Phys. Rev. Lett. 95, 196102 (2005).

    ADS  Article  Google Scholar 

  19. Berndt, R. et al. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993).

    ADS  Article  Google Scholar 

  20. Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings in The Porphyrins (ed. Dolphin, D.) Vol. 3, Ch. 1, 1–165 (Academic Press, 1978).

  21. Schull, G., Neel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    ADS  Article  Google Scholar 

  22. Aizpurua, J., Apell, S. P. & Berndt, R. Role of tip shape in light emission from the scanning tunneling microscope. Phys. Rev. B 62, 2065–2073 (2000).

    ADS  Article  Google Scholar 

  23. Zhao, J. et al. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 129, 7647–7656 (2007).

    Article  Google Scholar 

  24. Lombardi, J. R., Birke, R. L., Lu, T. & Xu, J. Charge transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J. Chem. Phys. 84, 4174–4180 (1986).

    ADS  Article  Google Scholar 

  25. Bellessa, J., Bonnand, C., Plenet, J. C. & Mugnier, J. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004).

    ADS  Article  Google Scholar 

  26. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    Article  Google Scholar 

  27. Hoffmann, G., Berndt, R. & Johansson, P. Two-electron photon emission from metallic quantum wells. Phys. Rev. Lett. 90, 046803 (2003).

    ADS  Article  Google Scholar 

  28. Uemura, T. et al. Local-plasmon-enhanced up-conversion fluorescence from copper phthalocyanine. Chem. Phys. Lett. 448, 232–236 (2007).

    ADS  Article  Google Scholar 

  29. Maher, R. C., Galloway, C. M., Le Ru, E. C., Cohen, L. F. & Etchegoin, P. G. Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev. 37, 965–979 (2008).

    Article  Google Scholar 

  30. Zheludev, N. I., Prosvirnin, S. L., Parasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with B. Wang and X.P. Wang, and support from the National Basic Research Program of China (grant nos 2006CB922003 and 2010CB923300), the Chinese Academy of Sciences (grant no. KJCX2.YW.H06) and the Natural Science Foundation of China (grant nos 10574117 and 10974186).

Author information

Authors and Affiliations

Authors

Contributions

X.L.Z. and H.Y.G. contributed equally to this work. Z.C.D., Y.L. and J.G.H. supervised the project, designed experiments, analysed the data and wrote the paper. X.L.Z. and H.Y.G. performed experiments and analysed data. C.Z., L.G.C. and R.Z. performed experiments. X.T. and Y.Z. performed simulations and data analysis. J.L.Y. analysed data and edited the paper.

Corresponding authors

Correspondence to Z. C. Dong or J. G. Hou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, Z., Zhang, X., Gao, H. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nature Photon 4, 50–54 (2010). https://doi.org/10.1038/nphoton.2009.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing