Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic quantum technologies

Abstract

The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems. This technology achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, which promise exponentially greater computational power for particular tasks. Photonics is destined to have a central role in such technologies owing to the high-speed transmission and outstanding low-noise properties of photons. These technologies may use single photons, quantum states of bright laser beams or both, and will undoubtedly apply and drive state-of-the-art developments in photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Encoding and manipulating a qubit in a single photon.
Figure 2: An optical CNOT gate.
Figure 3: Generalized teleportation and its applications.
Figure 4: One-way quantum computation and cluster states.
Figure 5: Silica-on-silicon photonic quantum circuits.
Figure 6: A basic photonic crystal quantum circuit.

References

  1. 1

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. 2

    Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Article  Google Scholar 

  4. 4

    Boto, A. N. et al. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    Article  ADS  Google Scholar 

  5. 5

    Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  Google Scholar 

  6. 6

    Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bells theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    Article  ADS  Google Scholar 

  7. 7

    Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  8. 8

    Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    Article  ADS  Google Scholar 

  9. 9

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  MATH  Google Scholar 

  10. 10

    Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  11. 11

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. 12

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  MATH  Google Scholar 

  13. 13

    DiVincenzo, D. P. & Loss, D. Quantum information is physical. Superlatt. Microstruct. 23, 419–432 (1998).

    Article  ADS  Google Scholar 

  14. 14

    O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  15. 15

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    Article  ADS  Google Scholar 

  16. 16

    Schmidt, H. & Imamoğlu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  17. 17

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  18. 18

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and EinsteinPodolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. 19

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  20. 20

    O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  21. 21

    O'Brien, J. L. et al. Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004).

    Article  ADS  Google Scholar 

  22. 22

    Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003).

    Article  ADS  Google Scholar 

  23. 23

    Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  Google Scholar 

  24. 24

    Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).

    Article  ADS  Google Scholar 

  25. 25

    Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of quantum error correction using linear optics. Phys. Rev. A 71, 052332 (2005).

    Article  ADS  Google Scholar 

  26. 26

    O'Brien, J. L., Pryde, G. J., White, A. G. & Ralph, T. C. High-fidelity Z-measurement error encoding of optical qubits. Phys. Rev. A 71, 060303 (2005).

    Article  ADS  Google Scholar 

  27. 27

    Lu, C.-Y. et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

    Article  ADS  Google Scholar 

  28. 28

    Lu, C.-Y., Browne, D. E., Yang, T. & Pan, J.-W. Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007).

    Article  ADS  Google Scholar 

  29. 29

    Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

    Article  ADS  Google Scholar 

  30. 30

    Yoran, N. & Reznik, B. Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett. 91, 037903 (2003).

    Article  ADS  Google Scholar 

  31. 31

    Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  32. 32

    Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  33. 33

    Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    Article  ADS  Google Scholar 

  34. 34

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  35. 35

    Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  36. 36

    Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

  37. 37

    Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: A cavity QED model. Phys. Rev. Lett. 75, 3788–3791 (1995).

    Article  ADS  Google Scholar 

  38. 38

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  39. 39

    Devitt, S. J. et al. Photonic module: An on-demand resource for photonic entanglement. Phys. Rev. A 76, 052312 (2007).

    Article  ADS  Google Scholar 

  40. 40

    Stephens, A. M. et al. Deterministic optical quantum computer using photonic modules. Phys. Rev. A 78, 032318 (2008).

    Article  ADS  Google Scholar 

  41. 41

    Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Article  ADS  Google Scholar 

  42. 42

    Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  ADS  Google Scholar 

  43. 43

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  44. 44

    Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1, 1) interferometers. Phys. Rev. A 33, (1986).

  45. 45

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  46. 46

    Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    Article  ADS  Google Scholar 

  47. 47

    Resch, K. J. et al. Timereversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).

    Article  ADS  Google Scholar 

  48. 48

    Ou, Z. Y., Zou, X. Y., Wang, L. J. & Mandel, L. Experiment on nonclassical fourth-order interference. Phys. Rev. A 42, 2957–2965 (1990).

    Article  ADS  Google Scholar 

  49. 49

    Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    Article  ADS  Google Scholar 

  50. 50

    Nagata, T., Okamoto, R., O' Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  ADS  Google Scholar 

  51. 51

    Okamoto, R. et al. Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers. New J.Phys. 10, 073033 (2008).

    Article  ADS  Google Scholar 

  52. 52

    Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  53. 53

    Bowen, W. P., Treps, N., Schnabel, R. & Lam, P. K. Experimental demonstration of continuous variable polarization entanglement. Phys. Rev. Lett. 89, 253601 (2002).

    Article  ADS  Google Scholar 

  54. 54

    Korolkova, N., Leuchs, G., Loudon, R., Ralph, T. C. & Silberhorn, C. Polarization squeezing and continuous-variable polarization entanglement. Phys. Rev. A 65, 052306 (2002).

    Article  ADS  Google Scholar 

  55. 55

    Laurat, J., Coudreau, T., Keller, G., Treps, N. & Fabre, C. Effects of mode coupling on the generation of quadrature Einstein–Podolsky–Rosen entanglement in a type-II optical parametric oscillator below threshold. Phys. Rev. A 71, 022313 (2005).

    Article  ADS  Google Scholar 

  56. 56

    Wagner, K. et al. Entangling the spatial properties of laser beams. Science 321, 541–543 (2008).

    Article  ADS  Google Scholar 

  57. 57

    Sasaki, M., Kato, K., Izutsu, M. & Hirota, O. A demonstration of superadditivity in the classical capacity of a quantum channel. Phys. Lett. A 236, 1–4 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. 58

    Wiseman, H. M. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. Phys. Rev. Lett. 75, 4587–4590 (1995).

    Article  ADS  Google Scholar 

  59. 59

    Armen, M. A. Au, J. K., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

    Article  ADS  Google Scholar 

  60. 60

    Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994).

    ADS  Google Scholar 

  61. 61

    Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

    ADS  Google Scholar 

  62. 62

    Suzuki, S., Yonezawa, H., Kannari, F., Sasaki, M. & Furusawa, A. 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4 . Appl. Phys. Lett. 89, 061116 (2006).

    Article  ADS  Google Scholar 

  63. 63

    Polzik, E. S., Carri, J. & Kimble, H. J. Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit. Appl. Phys. B 55, 279–290 (1992).

    Article  ADS  Google Scholar 

  64. 64

    Takeno, Y., Yukawa, M., Yonezawa, H. & Furusawa, A. Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 4321–4327 (2007).

    Article  ADS  Google Scholar 

  65. 65

    Vahlbruch, H. et al. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008).

    Article  ADS  Google Scholar 

  66. 66

    Yukawa, M., Benichi, H. & Furusawa, A. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A 77, 022314 (2008).

    Article  ADS  Google Scholar 

  67. 67

    Dakna, M., Anhut, T., Opatrný, T., Knöll, L. & Welsch, D.-G. Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997).

    Article  ADS  Google Scholar 

  68. 68

    Ourjoumstev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  69. 69

    Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  70. 70

    Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).

    Article  ADS  Google Scholar 

  71. 71

    Yoshino, K.-I., Aoki, T. & Furusawa, A. Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett. 90, 041111 (2007).

    Article  ADS  Google Scholar 

  72. 72

    Lee, N. et al. in CLEO/IQEC 2009 Technical Digest CD-ROM paper ITuB4 (CLEO/IQEC, 2009).

    Google Scholar 

  73. 73

    Zhou, X., Leung, D. W. & Chuang, I. L. Methodology for quantum logic gate construction. Phys. Rev. A 62, 052316 (2000).

    Article  ADS  Google Scholar 

  74. 74

    Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states Phys. Rev. Lett. 97, 110501 (2006).

    Article  ADS  Google Scholar 

  75. 75

    Filip, R., Marek, P. & Andersen, U. L. Measurement-induced continuous-variable quantum interactions. Phys. Rev. A 71, 042308 (2005).

    Article  ADS  Google Scholar 

  76. 76

    Yoshikawa, J. et al. Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76, 060301(R) (2007).

    Article  ADS  Google Scholar 

  77. 77

    Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  78. 78

    Yoshikawa, J.-I. et al. Demonstration of a quantum nondemolition sum gate. Phys. Rev. Lett. 101, 250501 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  79. 79

    Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  80. 80

    Su, X. et al. Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007).

    Article  ADS  Google Scholar 

  81. 81

    Yukawa, M., Ukai, R., van Loock, P. & Furusawa, A. Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008).

    Article  ADS  MATH  Google Scholar 

  82. 82

    Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  83. 83

    Migdal, A. & Dowling, J. (eds) Single-photon detectors, applications, and measurement. J. Mod. Opt. (special issue) 51, (2004).

  84. 84

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  85. 85

    Faraon, A. et al. Dipole induced transparency in waveguide coupled photonic crystal cavities. Opt. Express 16, 12154–12162 (2008).

    Article  ADS  Google Scholar 

  86. 86

    Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).

    Article  ADS  Google Scholar 

  87. 87

    Takesue, H. & Inoue, K. Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers. Phys. Rev. A 72, 041804 (2005).

    Article  ADS  Google Scholar 

  88. 88

    Matthews, J.C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  89. 89

    Politi, A., Matthews, J.C. F. & O'Brien, J. L. Shor's quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. 90

    Marshall, G. D. et al. Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009).

    Article  ADS  Google Scholar 

  91. 91

    Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

    Article  ADS  Google Scholar 

  92. 92

    Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. 93

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  94. 94

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  95. 95

    Grangier, P., Sanders, B. & Vučković, J. (eds) Focus on single photons on demand. New J.Phys. (special issue) 6, 85–100 (2004).

    Article  Google Scholar 

  96. 96

    Farrow, T. et al. Single-photon emitting diode based on a quantum dot in a micro-pillar. Nanotechnology 19, 345401 (2008).

    Article  Google Scholar 

  97. 97

    Ates, S. et al. Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Preprint at <http://arxiv.org/abs/0902.3612v1> (2009).

  98. 98

    Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Article  ADS  Google Scholar 

  99. 99

    Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

    Article  ADS  Google Scholar 

  100. 100

    Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).

    Article  ADS  Google Scholar 

  101. 101

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. 102

    Braje, D. A., Balić, V., Yin, G. Y. & Harris, S. E. Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801 (2003).

    Article  ADS  Google Scholar 

  103. 103

    Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  104. 104

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  105. 105

    Press, D. et al. Photon antibunching from a single quantum-dot–microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007).

    Article  ADS  Google Scholar 

  106. 106

    Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  107. 107

    Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

    Article  ADS  Google Scholar 

  108. 108

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  ADS  Google Scholar 

  109. 109

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  110. 110

    Birnbaum, K. M. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  111. 111

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  112. 112

    Hennessy, K. et al. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett. 87, 021108 (2005).

    Article  ADS  Google Scholar 

  113. 113

    Mosor, S. et al. Scanning a photonic crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105 (2005).

    Article  ADS  Google Scholar 

  114. 114

    Faraon, A. et al. Local tuning of photonic crystal cavities using chalcogenide glasses. Appl. Phys. Lett. 92, 043123 (2008).

    Article  ADS  Google Scholar 

  115. 115

    Faraon, A. et al. Local quantum dot tuning on photonic crystal chips. Appl. Phys. Lett. 90, 213110 (2007).

    Article  ADS  Google Scholar 

  116. 116

    Faraon, A. & Vučković, J. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl. Phys. Lett. 95, 043102 (2009).

    Article  ADS  Google Scholar 

  117. 117

    Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J.Phys. 11, 023034 (2009).

    Article  ADS  Google Scholar 

  118. 118

    Faraon, A., Majumdar, A., Kim, H., Petroff, P. & Vučković, J. Fast electrical control of a quantum dot strongly coupled to a nano-resonator. Preprint available at <http://arxiv.org/abs/0906.0751> (2009).

  119. 119

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  120. 120

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  121. 121

    VanDevender, A. P. & Kwiat, P. G. Quantum transduction via frequency upconversion. J.Opt. Soc. Am. B 24, 295–299 (2007).

    Article  ADS  Google Scholar 

  122. 122

    Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.L.O.B. acknowledges support from EPSRC, QIP IRC, IARPA, ERC and the Leverhulme Trust, and also acknowledges a Royal SocietyWolfson Merit Award. A.F. acknowledges financial support from SCF, GIA, G-COE, PFN, MEXT, SCOPE and REFOST. J.V. acknowledges support from ONR, ARO and NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy L. O'Brien.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Brien, J., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon 3, 687–695 (2009). https://doi.org/10.1038/nphoton.2009.229

Download citation

Further reading

Search

Quick links