Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

III-nitride photonic-crystal light-emitting diodes with high extraction efficiency

Abstract

Light-emitting diodes are becoming an increasingly attractive alternative to conventional light sources due to their small size, high efficiency and long lifetime. Ongoing research is dedicated to improving their performance through the use of more efficient light-generating and light-extracting structures. Here, we demonstrate light-emitting diodes achieving high extraction efficiency by using photonic crystals. The structures are iii-nitride thin-film light-emitting diodes emitting at λ = 450 nm. The photonic-crystal layer provides superior optical mode control compared to conventional iii-nitride light-emitting diodes, efficiently coupling guided modes out of the light-emitting diode. Fabry–Perot and photonic-crystal induced modes are observed in the far-field radiation patterns and are matched to theoretical electromagnetic calculations. The optical mode control results in a high-performance light-emitting diode with an estimated unencapsulated light extraction of 73%, higher than any unencapsulated iii-nitride light-emitting diode measured to date.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Light emission and extraction.
Figure 2: Device design.
Figure 3: Wavelength-resolved angular far-field patterns.
Figure 4: Normalized band structures.
Figure 5: θφ resolved experimental far-field patterns of photonic-crystal LEDs at a wavelength of 480 nm.
Figure 6: Performance of devices.

References

  1. 1

    Holonyak, Jr, N. Is the light emitting diode (LED) an ultimate lamp? Am. J. Phys. 68, 864–866 (2000).

    ADS  Article  Google Scholar 

  2. 2

    Gardner, N. F. et al. Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A cm−2. Appl. Phys. Lett. 91, 243506 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Nakamura, S. Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    ADS  Article  Google Scholar 

  4. 4

    Wierer, J. J. et al. High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett. 78, 3379–3381 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Haerle, V. et al. High brightness LEDs for general lighting applications using the new ThinGaN™-technology. Phys. Stat. Sol (a) 201, 2736–2739 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Shchekin, O. B. et al. High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Krames, M. R. et al. Status and future of high-power light-emitting diodes for solid-state lighting, J. Display Tech. 3, 160–175 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  9. 9

    Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Schubert, E. F. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997).

    ADS  Article  Google Scholar 

  10. 10

    Fujta, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  12. 12

    Boroditsky, M. et al. Surface recombination measurements on iiiv candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497–3504 (2000).

    ADS  Article  Google Scholar 

  13. 13

    Choi, Y.-S. et al. GaN blue photonic crystal membrane nanocavities. Appl. Phys. Lett. 87, 243101 (2005).

    ADS  Article  Google Scholar 

  14. 14

    Rattier, M. et al. Omnidirectional and compact guided light extraction from Archimedean photonic lattices. Appl. Phys. Lett. 83, 1283 (2003).

    ADS  Article  Google Scholar 

  15. 15

    Oder, T. N., Kim, K. H., Lin, J. Y. & Jiang, H. X. III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 83, 1231–1233 (2003).

    ADS  Article  Google Scholar 

  16. 16

    Wierer, J. J. et al. InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004).

    ADS  Article  Google Scholar 

  17. 17

    Orita, K. et al. High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal. Jpn J. Appl. Phys. 43, 5809–5813 (2004).

    ADS  Article  Google Scholar 

  18. 18

    David, A. et al. Photonic crystal laser lift-off GaN light-emitting diodes. Appl. Phys. Lett. 88, 133514 (2006).

    ADS  Article  Google Scholar 

  19. 19

    David, A., Benisty, H. & Weisbuch, C. Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. J. Display Tech. 3, 133–148 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Benisty, H., De Neve, H. & Weisbuch, C. Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612–1631 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Benisty, H., De Neve, H. & Weisbuch, C. Impact of planar microcavity effects on light extraction—Part II: selected exact simulations and role of photon recycling. IEEE J. Quantum Electron. 34, 1632–1643 (1998).

    ADS  Article  Google Scholar 

  22. 22

    David, A. et al. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Appl. Phys. Lett. 87, 101107 (2004).

    ADS  Article  Google Scholar 

  23. 23

    David, A. et al. Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Appl. Phys. Lett. 88, 061124 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Whittaker, D. M. & Culshaw, I. S. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60, 2610–2618 (1999).

    ADS  Article  Google Scholar 

  25. 25

    Delbeke, D., Bienstman, P., Bockstaele, R. & Baets, R. Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode. J. Opt. Soc. Am. A 19, 871–880 (2002).

    ADS  Article  Google Scholar 

  26. 26

    David, A., Benisty, H. & Weisbuch, C. Spontaneous emission in GaN/InGaN photonic crystal nanopillars. Opt. Express 15, 17991–18004 (2007).

    ADS  Article  Google Scholar 

  27. 27

    David, A. et al. GaN light-emitting diodes with Archimedean lattice photonic crystals. Appl. Phys. Lett. 88, 073510 (2006).

    ADS  Article  Google Scholar 

  28. 28

    Ochoa, D. et al. Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode. J. Appl. Phys. 85, 2994–2996 (1999).

    ADS  Article  Google Scholar 

  29. 29

    Schubert, M. F., Chhajed, S., Kim, J. K. & Schubert, E. F. Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Appl. Phys. Lett. 91, 051117 (2007).

    ADS  Article  Google Scholar 

  30. 30

    David, A., Benisty, H. & Weisbuch, C. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 73, 075107 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from several people, including M. Verschuuren of Philips Research, and T. Nguyen, K. Than and M. R. Krames of Philips Lumileds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurelien David.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wierer, J., David, A. & Megens, M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photon 3, 163–169 (2009). https://doi.org/10.1038/nphoton.2009.21

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing