Subjects

Abstract

The sensitivity of molecular fingerprinting is dramatically improved when the absorbing sample is placed in a high-finesse optical cavity, because the effective path length is increased. When the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace gases may be identified1 within a few milliseconds. However, efficient analysis of the light transmitted through the cavity remains challenging. Here, a novel approach—cavity-enhanced, frequency-comb, Fourier-transform spectroscopy—fully overcomes this difficulty and enables measurement of ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of microseconds without any need for detector arrays, potentially from the terahertz to ultraviolet regions. Within a period of just 18 µs, we recorded the spectra of the ammonia 1.0 µm overtone bands comprising 1,500 spectral elements and spanning 20 nm, with a resolution of 4.5 GHz and a noise equivalent absorption at 1 s averaging of 1 × 10−10 cm−1 Hz−1/2, thus opening a route to time-resolved spectroscopy of rapidly evolving single events.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

  2. 2.

    & Cavity Ring Down Spectroscopy: Techniques and Applications (Wiley, September 2009).

  3. 3.

    , & Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000).

  4. 4.

    , , , & Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm. Opt. Lett. 32, 307–309 (2007).

  5. 5.

    & Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).

  6. 6.

    , , & Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

  7. 7.

    , , , & Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett. 468, 1–8 (2009).

  8. 8.

    , , , & Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).

  9. 9.

    , & Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

  10. 10.

    et al. Laser frequency combs for molecular fingerprinting. 2009 IEEE LEOS Annual Meeting Conference Proceedings, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2009).

  11. 11.

    et al. Frequency comb Fourier transform spectroscopy with kHz optical resolution, in Fourier Transform Spectroscopy paper FMB2, ThB4, 2 pp. (Optical Society of America, 2009).

  12. 12.

    , & Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

  13. 13.

    , , , & Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).

  14. 14.

    , , , & Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

  15. 15.

    , , & Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

  16. 16.

    , & Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).

  17. 17.

    , & Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

  18. 18.

    Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

  19. 19.

    Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

  20. 20.

    , & Optical frequency metrology. Nature 416, 233–237 (2002).

  21. 21.

    et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

  22. 22.

    , & Spectroscopy and vibrational couplings in the 3ν3 region of acetylene. Mol. Phys. 66, 333–353 (1989).

  23. 23.

    et al. Band parameters and k coefficients for self-broadened ammonia in the range 4,000–11,000 cm−1. J. Quant. Spectrosc. Radiat. Transf. 62, 193–204 (1999).

  24. 24.

    et al. NH3 and PH3 line parameters: the 2000 HITRAN update and new results. J. Quant. Spectrosc. Radiat. Transf. 82, 293–312 (2003).

  25. 25.

    et al. Phase-stabilized 1.5 W frequency comb at 2.8–4.8 µm. Opt. Lett. 34, 1330–1332 (2009).

Download references

Acknowledgements

Research was conducted in the scope of the European Associated Laboratory ‘European Laboratory for Frequency Comb Spectroscopy’. Support was provided by the Max Planck Foundation and, for the PhD fellowship of P.J., by the Délégation Générale de l'Armement. The expert help of D. Höfling and T. Wilken in the operation of the ytterbium lasers is warmly acknowledged.

Author information

Affiliations

  1. Max Planck Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

    • Birgitta Bernhardt
    • , Akira Ozawa
    • , Thomas Udem
    • , Ronald Holzwarth
    • , Theodor W. Hänsch
    •  & Nathalie Picqué
  2. Laboratoire de Photophysique Moléculaire, CNRS, Bâtiment 350, Université Paris-Sud, 91405 Orsay, France

    • Patrick Jacquet
    • , Marion Jacquey
    • , Guy Guelachvili
    •  & Nathalie Picqué
  3. The Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 Japan

    • Yohei Kobayashi
  4. Menlo Systems GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany

    • Ronald Holzwarth
  5. Ludwig-Maximilians-Universität München, Fakultät für Physik, Schellingstrasse 4/III, 80799 München, Germany

    • Theodor W. Hänsch

Authors

  1. Search for Birgitta Bernhardt in:

  2. Search for Akira Ozawa in:

  3. Search for Patrick Jacquet in:

  4. Search for Marion Jacquey in:

  5. Search for Yohei Kobayashi in:

  6. Search for Thomas Udem in:

  7. Search for Ronald Holzwarth in:

  8. Search for Guy Guelachvili in:

  9. Search for Theodor W. Hänsch in:

  10. Search for Nathalie Picqué in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Nathalie Picqué.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.217

Further reading