Low-divergence single-mode terahertz quantum cascade laser

Article metrics

Abstract

The operation of quantum cascade lasers has to date been demonstrated over a broad frequency range in the terahertz spectrum (from 4.4 THz to 1.2 THz)1,2,3. Most potential applications of terahertz quantum cascade lasers require a source that has an excellent spatial and spectral control of the radiated emission4,5,6,7. Here, we present a distributed feedback design of a double-metal waveguide quantum cascade laser8,9,10 that features a grating resonant with the third-order Bragg condition. We show that an improvement of the extraction efficiency results in control of the laser emission wavelength and enhanced output power. Moreover, the grating can act as an array of phased linear sources, reshaping the typical wide and patterned far-field of double-metal waveguides into a narrow beam of 10° divergence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Vector diagram for a third-order DFB in the wave vector space k.
Figure 2: Finite-element simulations of the third-order DFB waveguide.
Figure 3: Light emission characteristics of typical third-order DFB devices.
Figure 4: Far-field measurements.
Figure 5: Beam pattern for all the devices in which a fundamental lateral mode propagates in the waveguide.

References

  1. 1

    Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

  2. 2

    Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

  3. 3

    Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009).

  4. 4

    Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).

  5. 5

    Sakai, K. Topics in Applied Physics: Terahertz Optoelectronics (ed. Sakai, K.) (Springer, 2005).

  6. 6

    Mittleman, D. Sensing with terahertz radiation. Springer Series in Optical Sciences, vol. 85 (Springer, 2004).

  7. 7

    Khosropanah, P. et al. 3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser. J. Appl. Phys. 104, 113106 (2008).

  8. 8

    Bjorkholm, J. E. & Shank, C. V. Higher-order distributed feedback oscillators. Appl. Phys. Lett. 20, 306–308 (1972).

  9. 9

    Carrol, J., Witheaway, J. & Plumb, D. Distributed Feedback Semiconductor Lasers (IEE, 1998).

  10. 10

    Yariv, A. Optical Electronics 4th edn, Ch 13 (Saunders College Publishing, 1991).

  11. 11

    Williams, B. S., Kumar, S., Huand, Q. & Reno, J. L. Operation of terahertz quantum cascade laser at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 1, 3331–3339 (2005).

  12. 12

    Belkin, M. A. et al. Terahertz quantum cascade lasers with copper metal–metal waveguides operating up to 178 K. Opt. Express 16, 3242–3248 (2008).

  13. 13

    Adam, A. J. L., Kasalynas, I., Hovenier, J. N., Klaasser, T. O. & Gao, J. R. Beam pattern of terahertz quantum cascade lasers with subwavelength cavity dimensions. Appl. Phys. Lett. 88, 151105 (2006).

  14. 14

    Amanti, M. I., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

  15. 15

    Wilfried, M. et al. Metal–metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna. Appl. Phys. Lett. 93, 183508 (2008).

  16. 16

    Lee, A. W. et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt. Lett. 32, 2840–2842 (2007).

  17. 17

    Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2006).

  18. 18

    Fan, J. A. et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express 14, 11672–11680 (2006).

  19. 19

    Chassagneux, Y. et al. Electrically pumped photonic crystal terahertz semiconductor lasers controlled by boundary conditions. Nature 457, 174–178 (2009).

  20. 20

    Finger, N., Schrenk, W. & Gornik, E. Analysis of TM-polarized DFB laser structures with metal surface gratings. IEEE J. Quantum Electron. 36, 780–786 (2000).

  21. 21

    Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum cascade lasers. IEEE J. Quantum Electron. 42, 257–265 (2006).

  22. 22

    Balanis, C. A. Antenna Theory Ch 6 (Wiley-Interscience, 2005).

  23. 23

    Scalari, G., Hoyler, N., Giovannini, M. & Faist, J. Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 86, 181101 (2005).

Download references

Acknowledgements

This work was supported by the Swiss National Foundation under the NCCR project Quantum Photonics. The authors thank A. Bismuto for support in the processing of the devices, J. Lloyd-Hughes for careful reading of the manuscript and Y. Chassagneux and F. Castellano for fruitful discussions.

Author information

M.I.A. carried out the modelling of the structures, fabricated the samples, performed the measurements and wrote the manuscript. M.B. and M.F. conducted MBE growth of the samples. G.S. contributed to data interpretation and experimental work. The idea was developed by J.F., and all the work has been done under his supervision.

Correspondence to M. I. Amanti.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amanti, M., Fischer, M., Scalari, G. et al. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon 3, 586–590 (2009) doi:10.1038/nphoton.2009.168

Download citation

Further reading