Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-shot terahertz-field-driven X-ray streak camera

Abstract

A few-femtosecond X-ray streak camera has been realized using a pump–probe scheme that samples the transient response of matter to ionizing soft X-ray radiation in the presence of an intense synchronized terahertz field. Borrowing its concept from attosecond metrology, the femtosecond X-ray streak camera fills the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and streaking techniques operating in the sub-femtosecond regime. Its single-shot capability permits the duration and time structure of individual X-ray pulses to be determined. For several classes of experiments in time-resolved spectroscopy, diffraction or imaging envisaged with novel accelerator- and laser-based short-pulse X-ray sources this knowledge is essential, but represents a major challenge to X-ray metrology. Here we report on the single-shot characterization of soft X-ray pulses from the free-electron laser facility FLASH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental setup.
Figure 2: Sampled terahertz vector potential.
Figure 3: Averaged photoelectron spectra.
Figure 4: Histogram of reconstructed pulse durations.
Figure 5: Single-shot photoelectron spectra.
Figure 6: Single-shot photoelectron spectra and reconstructed temporal structure.

Similar content being viewed by others

References

  1. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  2. Arthur, J. et al. Linac Coherent Light Source (LCLS). Conceptual design report no. SLAC-R593 (Stanford, 2002) (see also http://www-ssrl.stanford.edu/lcls/cdr).

  3. Shintake, T. et al. A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photon. 2, 555–559 (2008).

    Article  Google Scholar 

  4. Altarelli, M. et al. (eds) XFEL: The European X-Ray Free-Electron Laser. Technical design report no. DESY 2006-097 (DESY, 2006). Preprint at <http://xfel.desy.de>.

  5. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma Wakefield accelerator. Nature Phys. 4, 130–133 (2008).

    Article  ADS  Google Scholar 

  6. Naumova, N. M. et al. Towards efficient generation of attosecond pulses from overdense plasma targets. New J. Phys. 10, 025022 (2008).

    Article  ADS  Google Scholar 

  7. Lambert, G. et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).

    Article  Google Scholar 

  8. Feldhaus, J., Saldin, E. L., Schneider, J. R., Schneidmiller, E. A. & Yurkov, M. V. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL, Opt. Commun. 140, 341–352 (1997).

    Article  ADS  Google Scholar 

  9. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs. Opt. Commun. 239, 161–172 (2004).

    Article  ADS  Google Scholar 

  10. Cavalieri, A. L. et al. Clocking femtosecond X-rays. Phys. Rev. Lett. 94, 114801 (2005).

    Article  ADS  Google Scholar 

  11. Maltezopoulos, T. et al. Single-shot timing measurements of extreme-ultraviolet free-electron laser pulses. New J. Phys. 10, 033026 (2008).

    Article  ADS  Google Scholar 

  12. Bonifacio, R., De Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70–73 (1994).

    Article  ADS  Google Scholar 

  13. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical properties of radiation from VUV and X-ray free electron laser. Opt. Commun. 148, 383–403 (1998).

    Article  ADS  Google Scholar 

  14. Shakya, M. M. & Chang, Z. Achieving 280 fs resolution with streak camera by reducing deflection dispersion. Appl. Phys. Lett. 87, 041103 (2005).

    Article  ADS  Google Scholar 

  15. Feng, J. et al. An X-ray streak camera with high spatio-temporal resolution. Appl. Phys. Lett. 91, 134102 (2007).

    Article  ADS  Google Scholar 

  16. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    Article  ADS  Google Scholar 

  17. Uiberacker, M. et al. Attosecond metrology with controlled light waveforms. Laser Phys. 15, 195–204 (2005).

    Google Scholar 

  18. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  19. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  20. Borisov, V. et al. Proceedings of EPAC 2006, Edinburgh, Scotland, 26–30 June 2006, pp. 3595–3597.

  21. Gensch, M. et al. New infrared undulator beamline at FLASH. Infrared Phys. Technol. 51, 423–425 (2008).

    Article  ADS  Google Scholar 

  22. Mairesse, Y. & Quere, F. Frequency resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401(R) (2005).

  23. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  24. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  25. Mitzner, R. et al. Spatio-temporal coherence of free electron laser pulses in the soft X-ray regime. Opt. Express 16, 19909–19919 (2008).

    Article  ADS  Google Scholar 

  26. Feldhaus, J. et al. Proceedings of FEL 2005, Stanford, USA, 21–26 August 2005, pp. 183–186, econf C0508213.

  27. Tiedtke, K. et al. The soft X-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end stations. New J. Phys. 11, 023029 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the scientific and technical team at FLASH, in particular the machine operators and run coordinators. The authors also thank E. Saldin, E. Schneidmiller and M.V. Yurkov for valuable discussions and their assistance during the commissioning of the terahertz undulator beamline. Financial support from the EU project IA-SFS JRA2, the BMBF Program FSP 301-FLASH, the SFB-668 and the GrK-1355 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

F.B., M.D., U.F., M.G., O.G., M.K., R.K., E.P., J.R., B.S., M.W.: preparation and execution of experiments. M.D., U.F., T.G.: simulation and data analysis.

Corresponding author

Correspondence to Markus Drescher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frühling, U., Wieland, M., Gensch, M. et al. Single-shot terahertz-field-driven X-ray streak camera. Nature Photon 3, 523–528 (2009). https://doi.org/10.1038/nphoton.2009.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing