Review Article | Published:

Plasmonics for near-field nano-imaging and superlensing

Nature Photonics volume 3, pages 388394 (2009) | Download Citation

Subjects

Diffraction of light prevents optical microscopes from having spatial resolution beyond a value comparable to the wavelength of the probing light. This essentially means that visible light cannot image nanomaterials. Here we review the mechanism for going beyond this diffraction limit and discuss how manipulation of light by means of surface plasmons propagating along the metal surface can help to achieve this. The interesting behaviour of light under the influence of plasmons not only allows superlensing, in which perfect imaging is possible through a flat thin metal film, but can also provide nano-imaging of practical samples by using a localized surface plasmon mode at the tip of a metallic nanoprobe. We also discuss the current research status and some intriguing future possibilities.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–420 (1873).

  2. 2.

    Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes. Ann. Phys. Chem. 303, 233–290 (1899).

  3. 3.

    Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).

  4. 4.

    & Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159–161 (1994).

  5. 5.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

  6. 6.

    , , & Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

  7. 7.

    & Principles of Optics (Pergamon, 1959).

  8. 8.

    , , & Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt. Lett. 30, 382–384 (2005).

  9. 9.

    Surface Plasmons (Springer, 1998).

  10. 10.

    , , & Direct observation of surface polariton localization caused by surface roughness. Opt. Commun. 117, 417–423 (1995).

  11. 11.

    On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396–402 (1902).

  12. 12.

    Near Field Optics and Surface Plasmon Polariton (Springer, 2001).

  13. 13.

    & Near-sighted superlens. Opt. Lett. 30, 75–77 (2005).

  14. 14.

    , , , & Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

  15. 15.

    & Imaging properties of metamaterial superlens. Appl. Phys. Lett. 82, 161–163 (2003).

  16. 16.

    & Subwavelength imaging by a left-handed material superlens. Phys. Rev. E68, 067601 (2003).

  17. 17.

    , , & Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

  18. 18.

    , , , & Far-field optical hyperlens magnifying sub-diffraction-limited optics. Science 315, 1686 (2007).

  19. 19.

    , & Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

  20. 20.

    , , & Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 53903 (2007).

  21. 21.

    , & Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

  22. 22.

    & Tip-Enhancement (Elsevier, 2007).

  23. 23.

    & Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B103, 8410–8426 (1999).

  24. 24.

    & Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

  25. 25.

    , , & A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  26. 26.

    , , & Near-field Raman scattering enhanced by a metalized tip. Chem. Phys. Lett. 335, 369–374 (2001).

  27. 27.

    et al. Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: Enhancement of second-harmonic generation. Appl. Phys. Lett. 81, 3461–3463 (2002).

  28. 28.

    , & Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

  29. 29.

    , , & High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

  30. 30.

    , & Near field optical microscopy using a metallic vibrating tip. Ultramicroscopy 57, 318–322 (1995).

  31. 31.

    , & Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994).

  32. 32.

    & Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

  33. 33.

    , & Near-field optical microscopy by local perturbation of a diffraction spot. Microsc. Microanal. Microstruct. 5, 389–397 (1994).

  34. 34.

    & Observation of single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 62, 458–461 (1989).

  35. 35.

    , , , & Gold-bead scanning near-field optical microscope with laser-force position control. Opt. Lett. 22, 1663–1665 (1997).

  36. 36.

    , & Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys. 116, 10895–10901 (2002).

  37. 37.

    , & Strength of the electric field in apertureless near-field optical microscopy. J. Appl. Phys. 89, 5774–5778 (2001).

  38. 38.

    & Controlling and tuning strong optical field gradient at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

  39. 39.

    , & The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution. J. Microsc. 176, 231–237 (1994).

  40. 40.

    , & Material contrast in scanning near-field optical microscopy at 1–10 nm resolution. Phys. Rev. B. 55, 7977–7984 (1997).

  41. 41.

    & Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. 148, 221–224 (1998).

  42. 42.

    & Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

  43. 43.

    , , & Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett. 341, 1–6 (2001).

  44. 44.

    , & Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B. 106, 9463–9483 (2002).

  45. 45.

    et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005).

  46. 46.

    et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

  47. 47.

    , , & Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 17402 (2005).

  48. 48.

    et al. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18, 125506 (2007).

  49. 49.

    , , , & Resonant optical antennas. Science 308, 1607–1609 (2005).

  50. 50.

    , , , & Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

  51. 51.

    , , & Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

  52. 52.

    , , , & Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).

  53. 53.

    , & Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J. Mol. Struct. 735, 75–84 (2005).

  54. 54.

    & Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl. Phys. Lett. 89, 103101 (2006).

  55. 55.

    , , & Plasmonic interactions between a metallic nanoshell and a thin metallic film. Phys. Rev. B76, 165410 (2007).

  56. 56.

    et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

  57. 57.

    , & Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

  58. 58.

    , , & Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

  59. 59.

    Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

  60. 60.

    , , & Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387, 2655–2662 (2007).

  61. 61.

    , , , & Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92, 220801 (2004).

  62. 62.

    , , & Highly sensitive strain detection in strained silicon by surface-enhanced Raman spectroscopy. Appl. Phys. Lett. 86, 263114 (2005).

  63. 63.

    et al. High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38, 789–796 (2007).

  64. 64.

    , , , & Near-field Raman scattering investigation of tip effects on C60 molecules. Phys. Rev. B73, 045416 (2006).

  65. 65.

    , & Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 129, 6708–6709 (2007).

  66. 66.

    & Surface- and tip-enhanced Raman scattering of DNA components. J. Raman Spectrosc. 37, 311–317 (2006).

  67. 67.

    , , & Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

  68. 68.

    , , , & Nanoscale optical imaging of single-walled carbon nanotubes. J. Lumin. 119–120, 204–208 (2006).

  69. 69.

    , , & Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Appl. Phys. Lett. 88, 093125 (2006).

  70. 70.

    , & Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

  71. 71.

    et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

  72. 72.

    et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425–441 (2004).

  73. 73.

    , & Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18, 44017 (2007).

  74. 74.

    et al. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93, 180801 (2004).

  75. 75.

    , , & Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys. Rev. Lett. 97, 260801 (2006).

  76. 76.

    , & Tip-enhanced fluorescence imaging of quantum dots. Appl. Phys. Lett. 87, 183101 (2005).

  77. 77.

    & Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

  78. 78.

    , , & Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  79. 79.

    , , , & Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Lett. 5, 2310–2313 (2005).

  80. 80.

    & Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008).

  81. 81.

    & Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19, 384012 (2008).

  82. 82.

    , , & Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

  83. 83.

    et al. The unimolecular dissociation of the OH stretching states of HOCl: Comparison with experimental data. J. Chem. Phys. 115, 8880–8887 (2001).

  84. 84.

    & Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944 (1984).

  85. 85.

    & Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study. J. Chem. Phys. 116, 1156–1164 (2002).

  86. 86.

    et al. Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems. Bioimaging 4, 215–324 (1996).

  87. 87.

    , , & Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl Acad. Sci. USA 96, 6700–6705 (1999).

  88. 88.

    , , & Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

  89. 89.

    & Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106, 311–317 (2002).

  90. 90.

    , & Metal nanostructures with single molecule sensitivity in surface enhanced Raman scattering. Vib. Spectrosc. 35, 121–129 (2004).

  91. 91.

    , , & Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000).

  92. 92.

    , , & Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4, 1143–1212 (1992).

  93. 93.

    , , , & Sub-wavelength Raman spectroscopy on isolated silver islands. Vib. Spectrosc. 22, 39–48 (2000).

  94. 94.

    , & Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944–1948 (2006).

  95. 95.

    , & Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett. 6, 1269–1273 (2006).

  96. 96.

    & Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007).

  97. 97.

    et al. Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. Phys. Rev. Lett. 102, 186101 (2009).

  98. 98.

    et al. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J. Phys. Chem. C 111, 9460–9464 (2007).

  99. 99.

    , , , & Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. doi:10.1002/jrs.2287 (2009).

  100. 100.

    , & Mimicking surface plasmons with structured surface. Science 305, 847–848 (2004).

Download references

Acknowledgements

This work was supported by the Core Research for Educational Science and Technology (CREST) project of the Japan Science and Technology Corporation, and by the RIKEN Extreme Photonics programme.

Author information

Affiliations

  1. Department of Applied Physics, Osaka University, Suita 565-0871, Osaka, Japan.

    • Satoshi Kawata
    •  & Prabhat Verma
  2. RIKEN, Wako, Saitama 351-0198, Japan.

    • Satoshi Kawata
  3. Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Osaka, Japan.

    • Yasushi Inouye
    •  & Prabhat Verma

Authors

  1. Search for Satoshi Kawata in:

  2. Search for Yasushi Inouye in:

  3. Search for Prabhat Verma in:

Corresponding authors

Correspondence to Satoshi Kawata or Prabhat Verma.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2009.111

Further reading