Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning the scattering response of optical nanoantennas with nanocircuit loads

Abstract

Optical nanodipoles made of plasmonic elongated nanoparticles have been theoretically and experimentally characterized by various groups in recent studies1,2,3,4,5,6,7,8,9,10. However, compared with their radiofrequency counterparts, less attention has so far been paid to systematic design methodology for these nanoantennas, and in particular to the possibility of optimizing their radiation and scattering properties and tuning their frequency response by using proper ‘loading’ techniques. By interpreting nanoparticles' interaction with light as lumped nanocircuit elements11,12, we show how the concepts of antenna loading may be fully introduced in plasmonic nanoantenna design. In particular, we show how nanocircuit elements, and in general more complex nanofilters, designed within the framework of nanocircuit theory11 and used as nanoloads, may allow tuning of the frequency response of scattering from these nanoantennas at will. Series and parallel combinations of these nanoloads are also considered to add further degrees of freedom in the design.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Analogy between loading of a regular RF dipole and an optical nanodipole antenna.
Figure 2: Input and dipole impedances.
Figure 3: Scattering resonance shift.
Figure 4: Tailoring the scattering resonance using two loads.

References

  1. Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003).

    ADS  Article  Google Scholar 

  2. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. W. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Article  Google Scholar 

  3. Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  4. Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

    ADS  Article  Google Scholar 

  5. Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006).

    ADS  Google Scholar 

  6. Payne, E. K., Shuford, K. L., Park, S., Schatz, G. C. & Mirkin, C. A. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B 110, 2150–2154 (2006).

    Article  Google Scholar 

  7. Burke, P. J., Li, S. & Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotech. 5, 314–334 (2006).

    ADS  Article  Google Scholar 

  8. Hanson, G. W. On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas. IEEE Trans. Antennas Propagation 54, 3677–3685 (2006).

    ADS  Article  Google Scholar 

  9. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    ADS  Article  Google Scholar 

  10. Alù, A. & Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. http://arxiv.org/abs/0710.3411

  11. Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: Nano-inductors, nano-capacitors and nano-resistors. Phys. Rev. Lett. 95, 095504 (2005).

    ADS  Article  Google Scholar 

  12. Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    ADS  Article  Google Scholar 

  13. King, R. W. P. & Harrison, C. W. Antennas and Waves: A Modern Approach (MIT Press, Cambridge, Massachusetts, 1969).

    Google Scholar 

  14. Balanis, C. A. Antenna Theory (Wiley, New York, 1996).

    Google Scholar 

  15. Alù, A., Salandrino, A. & Engheta, N. Parallel, series, and intermediate interconnections of optical nanocircuit elements—Part 2: Nanocircuit and physical interpretation. J. Opt. Soc. Am. B 24, 3014–3022 (2007).

    ADS  Article  Google Scholar 

  16. Alù, A., Young, M. & Engheta, N. Nanofilters for optical nanocircuits. Phys. Rev. B 77, 114107 (2008).

    Article  Google Scholar 

  17. Alù, A. & Engheta, N. Optical nano-transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes. J. Opt. Soc. Am. B 23, 571–583 (2006).

    ADS  Article  Google Scholar 

  18. Alù, A. & Engheta, N. Theory of linear chains of metamaterial/plasmonic particles as sub-diffraction optical nanotransmission lines. Phys. Rev. B 74, 205436 (2006).

    ADS  Article  Google Scholar 

  19. CST Studio Suite 2006B. <http://www.cst.com>.

  20. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS  Article  Google Scholar 

  21. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Air Force Office of Scientific Research (AFOSR) grant no. FA9550-05-1-0442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Engheta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alù, A., Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon 2, 307–310 (2008). https://doi.org/10.1038/nphoton.2008.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.53

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing