Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A nanoelectromechanical tunable laser

Abstract

The ability to tune the frequency of an oscillator is of critical importance and is a fundamental building block for many systems, be they mechanical or electronic1,2. However, this very important function is still highly inadequate in optical oscillators, particularly in semiconductor laser diodes3,4. The limitations in tuning a laser frequency (or wavelength) include the tuning range and the speed of tuning, which is typically milliseconds or slower. In addition, the tuning is often not continuous and may require complex synchronization of several electrical control signals. In this Letter, we present a new tunable laser structure with a lightweight nanoelectromechanical mirror based on a single-layer, high-contrast subwavelength grating. The high-contrast subwavelength grating reflector enables a drastic reduction of the mirror mass, which increases the mechanical resonant frequency and hence tuning speed5. This allows for a wavelength-tunable light source with potential switching speeds of the order of tens of nanoseconds and suggests various new areas of practical application, such as bio- or chemical sensing6,7,8, chip-scale atomic clocks9 and projection displays10,11.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoelectromechanical tunable laser with a lightweight mirror.
Figure 2: Optical characteristic of NEMO-tunable VCSEL.
Figure 3: Continuous wavelength tuning of NEMO-tunable VCSEL.
Figure 4: Wavelength-tuning range limited by mirror bandwidth.
Figure 5: Mechanical tuning speed of NEMO-tunable VCSEL.

References

  1. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, New York, 1980).

    Google Scholar 

  2. Ilic, B. R., Krylov, S., Kondratovich, M. & Craighead, H. G. Optically actuated nanoelectromechanical oscillators. IEEE J. Sel. Top. Quant. Electron. 13, 392–399 (2007).

    ADS  Article  Google Scholar 

  3. Bruce, E. Tunable lasers. IEEE Spectrum 39, 35–39 (2002).

    Article  Google Scholar 

  4. Coldren, L. A. Monolithic tunable diode lasers. IEEE J. Sel. Top. Quant. Electron. 6, 988–999 (2000).

    ADS  Article  Google Scholar 

  5. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    ADS  Article  Google Scholar 

  6. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    ADS  Article  Google Scholar 

  7. Cooper, M. A. Optical biosensors in drug discovery. Nature Rev. Drug Discov. 1, 515–528 (2002).

    Article  Google Scholar 

  8. Lackner, M. et al. CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55 µm. Opt. Lett. 31, 3170–3172 (2006).

    ADS  Article  Google Scholar 

  9. Knappe, S. et al. A chip-scale atomic clock based on 87Rb with improved frequency stability. Opt. Express 13, 1249–1253 (2005).

    ADS  Article  Google Scholar 

  10. Van Kessel, P. F., Hornbeck, L. J., Meier, R. E. & Douglass, M. R. A MEMS-based projection display. Proc. IEEE 86, 1687–1704 (1998).

    Article  Google Scholar 

  11. Solgaard, O., Sandejas, F. S. A. & Bloom, D. M. Deformable grating optical modulator. Opt. Lett. 17, 688–690 (1992).

    ADS  Article  Google Scholar 

  12. Wu, M. C., Solgaard, O. & Ford, J. E. Optical MEMS for lightwave communication. J. Lightwave Technol. 24, 4433–4454 (2006).

    ADS  Article  Google Scholar 

  13. Iga, K. Surface-emitting laser — its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).

    ADS  Article  Google Scholar 

  14. Koyama, F. Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502–4513 (2006).

    ADS  Article  Google Scholar 

  15. Chang-Hasnain, C. J. Tunable VCSEL. IEEE J. Sel. Top. Quant. Electron. 6, 978–987 (2000).

    ADS  Article  Google Scholar 

  16. Harris, J. S. Jr. Tunable long-wavelength vertical-cavity lasers: The engine of next generation optical networks? IEEE J. Sel. Top. Quant. Electron. 6, 1145–1160 (2000).

    ADS  Article  Google Scholar 

  17. Riemenschneider, F. et al. Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range. IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).

    ADS  Article  Google Scholar 

  18. Hofmann, W. et al. High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs–InP VCSELs. Electron. Lett. 42, 976–977 (2006).

    Article  Google Scholar 

  19. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).

    ADS  Article  Google Scholar 

  20. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Express 15, 1222–1227 (2007).

    ADS  Article  Google Scholar 

  21. Mateus, C. F. R., Huang, M. C. Y., Deng, Y., Neureuther, A. R. & Chang-Hasnain, C. J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16, 518–520 (2004).

    ADS  Article  Google Scholar 

  22. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J. & Suzuki, Y. Broad-band mirror (1.12–1.62 µm) using a subwavelength grating. IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).

    ADS  Article  Google Scholar 

  23. Huang, M. C. Y., Cheng, K. B., Zhou, Y., Pisano, A. P. & Chang-Hasnain, C. J. Monolithic integrated piezoelectric MEMS-tunable VCSEL. IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).

    ADS  Article  Google Scholar 

  24. Bendickson, J. M., Glytsis, E. N., Gaylord, T. K. & Brundrett, D. L. Guided-mode resonant subwavelength gratings: Effects of finite beams and finite gratings. J. Opt. Soc. Am. A 18, 1912–1928 (2001).

    ADS  Article  Google Scholar 

  25. Maute, M. et al. Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities. Opt. Express 13, 8008–8014 (2005).

    ADS  Article  Google Scholar 

  26. Mateus, C. F. R., Huang, M. C. Y. & Chang-Hasnain, C. J. Micromechanical tunable optical filters: General design rules for wavelengths from near-IR up to 10 µm. Sens. Actuat. A 119, 57–62 (2005).

    Article  Google Scholar 

  27. Ding, Y. & Magnusson, R. Resonant leaky-mode spectral-band engineering and device applications. Opt. Express 12, 5661–5674 (2004).

    ADS  Article  Google Scholar 

  28. Boutami, S., Benbakir, B., Leclercq, J. L. & Viktorovitch, P. Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 91, 071105 (2007).

    ADS  Article  Google Scholar 

  29. Gustavsson, J. S. et al. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating. Opt. Express 13, 6626–6634 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Defense Advanced Research Projects Agency (DARPA) Center for Optoelectronic Nanostructure Semiconductor Research and Technology (CONSRT). We thank Land Mark Optoelectronic for the growth of the epitaxy wafer and Berkeley Microfabrication Laboratory for the fabrication support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie J. Chang-Hasnain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, M., Zhou, Y. & Chang-Hasnain, C. A nanoelectromechanical tunable laser. Nature Photon 2, 180–184 (2008). https://doi.org/10.1038/nphoton.2008.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing