Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical antennas direct single-molecule emission


Antennas have been used for more than a century to control the emission and collection of radio and microwave radiation1. An optical analogue is of great interest as it will allow unique control of absorption and emission2,3 at the nanometre scale4. Despite the intense recent research on optical antennas5,6,7,8, one of the main functions of traditional antennas, the directing of radiation, remains a challenge at optical frequencies. Here we experimentally demonstrate control of the emission direction of individual molecules by reversible coupling to an optical monopole antenna. We show how the angular emission of the coupled system is determined by the dominant antenna mode—that is, the antenna design—regardless of molecular orientation. This result reveals the role of the plasmon mode in the emission process and provides a clear guideline how to exploit the large available library of radio antennas to direct emission in nano-optical microscopy9,10, spectroscopy11,12 and light-emitting devices, including single-photon sources13,14,15.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emission control with a dipole antenna.
Figure 2: Optical monopole antenna.
Figure 3: Single-molecule fluorescence.
Figure 4: The electromagnetic field of a dipole emitter near the antenna.
Figure 5: Control of angular emission with an optical monopole antenna.


  1. Hertz, H. Űber electrodynamische Wellen im Luftraume und deren Reflexion. Annalen der Physik und Chemie 270, 609–623 (1888).

    Article  ADS  Google Scholar 

  2. Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).

    Article  ADS  Google Scholar 

  3. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  4. Greffet, J.-J. Nanoantennas for light emission. Science 308, 1561–1563 (2006).

    Article  Google Scholar 

  5. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  6. Fromm, D. P., Sundaramurthy, A., Schuck, J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    Article  ADS  Google Scholar 

  7. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  8. Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. & van Hulst, N. F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).

    Article  ADS  Google Scholar 

  9. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  Google Scholar 

  10. Frey, H. G., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).

    Article  ADS  Google Scholar 

  11. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  12. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  ADS  Google Scholar 

  13. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999).

    Article  ADS  Google Scholar 

  14. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  15. Lounis, B. & Moerner, W. E., Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  ADS  Google Scholar 

  16. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  17. Schniepp, H. & Sandoghdar, V. Spontaneous emission of europium ions embedded in dielectric nanospheres. Phys. Rev. Lett. 89, 257403 (2002).

    Article  ADS  Google Scholar 

  18. Steiner, M. et al. Microcavity-controlled single-molecule fluorescence. Chem. Phys. Chem. 6, 2190–2196 (2005).

    Article  Google Scholar 

  19. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  20. Wedge, S. & Barnes, W. L. Surface plasmon-polariton mediated light emission through thin metal films. Opt. Express 12, 3673–3685 (2004).

    Article  ADS  Google Scholar 

  21. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  22. Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  ADS  Google Scholar 

  23. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Article  ADS  Google Scholar 

  24. Balanis, C. A. Antenna Theory: Analysis and Design 3rd edn 799–801 (Wiley, Hoboken, New Jersey, 2005).

    Google Scholar 

  25. Mertens, H., Biteen, J. S., Atwater, H. A. & Polman, A. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Lett. 6, 2622–2625 (2006).

    Article  ADS  Google Scholar 

  26. Gersen, H. et al. Influencing the angular emission of a single molecule. Phys. Rev. Lett. 85, 5312–5315 (2000).

    Article  ADS  Google Scholar 

  27. Veerman, J. A., Otter, A. M., Kuipers, L. & van Hulst, N. F. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 72, 3115–3117 (1998).

    Article  ADS  Google Scholar 

  28. Veerman, J. A., Garcia-Parajo, M. F., Kuipers, L. & van Hulst, N. F. Single molecule mapping of the optical field distribution of probes for near-field microscopy. J. Microsc. 194, 477–482 (1999).

    Article  Google Scholar 

  29. Weiland, T. Discretization method for solution of Maxwells equations for 6-component fields. Electron. Commun. AEU 31, 116–120 (1977).

    Google Scholar 

  30. Lukosz, W. Light-emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. J. Opt. Soc. Am. 69, 1495–1503 (1979).

    Article  ADS  Google Scholar 

Download references


We thank J. Overman for performing the initial experiments, L. Kuipers and R.J. Moerland for discussions, Computer Simulation Technology (CST), Darmstadt, Germany, for constructive feedback on the use of Microwave Studio, and the Koerber Foundation (Hamburg, Germany) for financial support.

Author information

Authors and Affiliations



T.H.T. performed the experiments, carried out the interpretation and wrote the manuscript. F.D.S. and T.H.T. performed and processed the FIT calculations. F.B.S. and T.H.T. fabricated the antennas. N.F.v.H. supervised the project.

Corresponding author

Correspondence to N. F. van Hulst.

Supplementary information

Supplementary Information

Supplementary Information S1 (PDF 78 kb)

Supplementary Information

Supplementary video S1 animated video.gif (GIF 362 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taminiau, T., Stefani, F., Segerink, F. et al. Optical antennas direct single-molecule emission. Nature Photon 2, 234–237 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing