Letter | Published:

Observation of optical-fibre Kerr nonlinearity at the single-photon level

Nature Photonics volume 3, pages 9598 (2009) | Download Citation

Subjects

Abstract

Optical fibres have proved to be an important medium for manipulating and generating light in applications including soliton transmission1, light amplification2, all-optical switching3 and supercontinuum generation4. In the quantum regime, fibres may prove useful for ultralow-power all-optical signal processing5 and quantum information processing6. Here, we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fibre. Taking advantage of the large nonlinearity and managed dispersion of photonic crystal fibres7,8, we report very small (1 × 10−7 to 1 × 10−8 rad) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. We discuss the feasibility of quantum information processing using optical fibres, taking into account the observed Kerr nonlinearity, accompanied by ultrafast response time and low induced loss.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

  2. 2.

    , & Efficient Er3+-doped optical fiber amplifier pumped by a 1.48 µm InGaAsP laser diode. Appl. Phys. Lett. 54, 295–297 (1989).

  3. 3.

    , & Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon. Technol. Lett. 4, 362–365 (1992).

  4. 4.

    , & Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

  5. 5.

    , , , & Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photon. 2, 185–189 (2008).

  6. 6.

    Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

  7. 7.

    , , & All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

  8. 8.

    Photonic crystal fibers. Science 299, 358–362 (2003).

  9. 9.

    et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

  10. 10.

    , , , & Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

  11. 11.

    , & Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005).

  12. 12.

    et al. Quantum computation by communication. New J. Phys. 8, 30 (2006).

  13. 13.

    & Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007).

  14. 14.

    , , , & Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007).

  15. 15.

    et al. Photon number squeezing of ultrabroadband laser pulses generated by microstructure fibers. Phys. Rev. Lett. 94, 203601 (2005).

  16. 16.

    et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

  17. 17.

    L'éther lumineux démontre par l'effet du vent relatif d'éther dans un interférométre en rotation uniforme. C. R. Acad. Sci. 157, 708–719 (1913).

  18. 18.

    , & Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. Phys. Rev. A 73, 021802(R) (2006).

  19. 19.

    , , & Sagnac interferometer for gravitational-wave detection. Phys. Lev. Lett. 76, 3053–3056 (1996).

  20. 20.

    , , , & Lossless all-optical phase gate using a polarization-division Sagnac interferometer applicable to a waveguide-type Kerr medium. Appl. Phys. Lett. 91, 171119 (2007).

  21. 21.

    et al. Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures. Phys. Rev. B 50, 7689–7700 (1994).

  22. 22.

    , , , & Squeezed light generation in semiconductors. Phys. Rev. Lett. 74, 1728–1731 (1995).

  23. 23.

    & Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Phys. Rev. A 34, 3974–3988 (1986).

  24. 24.

    & Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express 12, 4490–4495 (2004).

  25. 25.

    et al. Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers. Phys. Rev. Lett. 97, 133901 (2006).

  26. 26.

    Nonlinear Fiber Optics 3rd ed. (Academic, 2001).

  27. 27.

    , , & Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002).

  28. 28.

    , , & Ultralow loss and long length photonic crystal fiber, J. Lightwave Technol. 22, 7–10 (2004).

Download references

Acknowledgements

The authors are grateful to K. Koshino and H. Ishihara for fruitful discussions. This research was supported in part by a Grant-in-Aid for Creative Scientific Research (no. 17GS1204) and a Grant-in-Aid for JSPS Fellows (no. 20009351) from the Japan Society for the Promotion of Science.

Author information

Affiliations

  1. Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi 980-8577, Japan

    • Nobuyuki Matsuda
    • , Yasuyoshi Mitsumori
    • , Hideo Kosaka
    •  & Keiichi Edamatsu
  2. CREST, Japan Science and Technology Agency, 4-1-8 Honmachi, Kawaguchi, Saitama 332-0012, Japan

    • Nobuyuki Matsuda
    • , Ryosuke Shimizu
    • , Yasuyoshi Mitsumori
    • , Hideo Kosaka
    •  & Keiichi Edamatsu
  3. PRESTO, Japan Science and Technology Agency, 4-1-8 Honmachi, Kawaguchi, Saitama 332-0012, Japan

    • Ryosuke Shimizu

Authors

  1. Search for Nobuyuki Matsuda in:

  2. Search for Ryosuke Shimizu in:

  3. Search for Yasuyoshi Mitsumori in:

  4. Search for Hideo Kosaka in:

  5. Search for Keiichi Edamatsu in:

Corresponding author

Correspondence to Nobuyuki Matsuda.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2008.292

Further reading