Article | Published:

Four-wave-mixing stopped light in hot atomic rubidium vapour

Nature Photonics volume 3, pages 103106 (2009) | Download Citation

Subjects

Abstract

Digital signal processing, holography, and quantum and classical information processing rely heavily upon recording the amplitude and phase of coherent optical signals. One method for achieving coherent information storage makes use of electromagnetically induced transparency. Storage is achieved by compressing the optical pulse using the steep dispersion of the electromagnetically induced transparency medium and then mapping the electric field to local atomic quantum-state superpositions. Here we show that nonlinear optical processes may enhance pulse compression and storage, and that information about the nonlinear process itself may be stored coherently. We report on a pulse storage scheme in hot atomic rubidium vapour, in which a four-wave-mixing normal mode is stored using a double-Λ configuration. The entire (broadened) waveform of the input signal is recovered after several hundred microseconds (1/e time of about 120 µs), as well as a new optical mode (idler) generated from the four-wave-mixing process.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

  2. 2.

    et al. Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium. Opt. Lett. 20, 982–984 (1995).

  3. 3.

    , & Resonant nonlinear optics in phase-coherent media, in Advances in Atomic Molecular and Optical Physics, Vol. 42, 347–386 (Academic Press, 2000).

  4. 4.

    , , , & Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

  5. 5.

    , , & Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

  6. 6.

    & Controlled light storage in a double lambda system. Opt. Commun. 209, 149–154 (2002).

  7. 7.

    , & Electromagnetically induced transparency and storing of a pair of pulses of light. Phys. Rev. A 69, 043801 (2004).

  8. 8.

    & Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys. Rev. A 71, 041801 (2005).

  9. 9.

    , & The dark-state polaritons of a double-lambda atomic ensemble. Phys. Lett. A 346, 269–274 (2005).

  10. 10.

    , , & Polariton picture of light propagation and storing in a tripod system. Opt. Commun. 260, 73–80 (2006).

  11. 11.

    New generalized hyperbolic functions to find new coupled ultraslow optical soliton pairs in a cold three-state double-lambda system. Physica Scripta 76, 8–14 (2007).

  12. 12.

    , & Slow and stored light in an amplifying double-λ system. Opt. Lett. 33, 1605–1607 (2008).

  13. 13.

    , , & Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96, 043603 (2006).

  14. 14.

    et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

  15. 15.

    et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

  16. 16.

    et al. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004).

  17. 17.

    et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

  18. 18.

    , , & A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

  19. 19.

    , , & Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007).

  20. 20.

    , & Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett. 100, 143601 (2008).

  21. 21.

    , , , & Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005).

  22. 22.

    , , , & Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett. 100, 183603 (2008).

  23. 23.

    & Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

  24. 24.

    , , & Light shift of coherent population trapping resonances. Europhys. Lett. 48, 385–389 (1999).

  25. 25.

    , & Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100, 123903 (2008).

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) Slow Light program.

Author information

Affiliations

  1. Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

    • Ryan M. Camacho
    • , Praveen K. Vudyasetu
    •  & John C. Howell
  2. The Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA

    • Ryan M. Camacho

Authors

  1. Search for Ryan M. Camacho in:

  2. Search for Praveen K. Vudyasetu in:

  3. Search for John C. Howell in:

Contributions

All authors contributed to the conception and design of the experiment and its physical interpretation. R.M.C and P.V.K. built the apparatus, took the data, and analysed the data. R.M.C. wrote the manuscript with input from P.V.K. and J.C.H.

Corresponding author

Correspondence to Ryan M. Camacho.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2008.290

Further reading