Abstract
The semiclassical evolution of spinning particles has recently been re-examined in condensed matter physics, high-energy physics, and optics, resulting in the prediction of the intrinsic spin Hall effect associated with the Berry phase. A fundamental origin of this effect is related to the spin–orbit interaction and topological monopoles. Here, we report a unified theory and a direct observation of two mutual phenomena: a spin-dependent deflection (the spin Hall effect) of photons and the precession of the Stokes vector along the coiled ray trajectory of classical geometrical optics. Our measurements are in perfect agreement with theoretical predictions, thereby verifying the dynamical action of the topological Berry-phase monopole in the evolution of light. These results may have promising applications in nano-optics and can be immediately extrapolated to the evolution of massless particles in a variety of physical systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Experimental observation of Berry phases in optical Möbius-strip microcavities
Nature Photonics Open Access 22 December 2022
-
Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements
Light: Science & Applications Open Access 12 July 2022
-
Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature
Nature Communications Open Access 01 July 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Berry, M. V. Quantal phase-factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).
Shapere, A. & Wilczek, F. (eds) Geometric Phases in Physics (World Scientific, 1989).
Littlejohn, R. G. & Flynn, W. G. Geometric phases in the asymptotic theory of coupled wave-equations. Phys. Rev. A 44, 5239–5256 (1991).
Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).
Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).
Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).
Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
Mathur, H. Thomas precession, spin–orbit interaction and Berry's phase. Phys. Rev. Lett. 67, 3325–3327 (1991).
Bialynicki-Birula, I. & Bialynicki-Birula, Z. Berry's phase in the relativistic theory of spinning particles. Phys. Rev. D 35, 2383–2387 (1987).
Bérard, A. & Mohrbach, H. Spin Hall effect and Berry phase of spinning particles. Phys. Lett. A 352, 190–195 (2006).
Liberman, V. S. & Zel'dovich, B. Y. Spin–orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46, 5199–5207 (1992).
Bliokh, K. Y. & Bliokh, Y. P. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: The anisotropy, Berry phase and the optical Magnus effect. Phys. Rev. E 70, 026605 (2004).
Bliokh, K. Y. & Bliokh, Y. P. Topological spin transport of photons: the optical Magnus effect and Berry phase. Phys. Lett. A 333, 181–186 (2004).
Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).
Bliokh, K. Y. & Bliokh, Y. P. Conservation of angular momentum, transverse shift and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96, 073903 (2006).
Bliokh, K. Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett. 97, 043901 (2006).
Duval, C., Horváth, Z. & Horváthy, P. A. Fermat principle for spinning light. Phys. Rev. D 74, 021701(R) (2006).
Gosselin, P., Bérard, A. & Mohrbach, H. Spin Hall effect of photons in a static gravitational field. Phys. Rev. D 75, 084035 (2007).
Bliokh, K. Y., Frolov, D. Y. & Kravtsov, Y. A. Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium. Phys. Rev. A 75, 053821 (2007).
Leyder, C. et al. Observation of the optical spin Hall effect. Nature Phys. 3, 628–631 (2007).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).
Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).
Fedorov, F. I. K teorii polnogo otrazheniya. Dokl. Akad. Nauk SSSR 105, 465–468 (1955).
Imbert, C. Calculation and experimental proof of transverse shift induced by total internal reflection of a circularly polarized-light beam. Phys. Rev. D 5, 787–796 (1972).
Кravtsov, Y. А. & Оrlov, Y. I. Geometrical Optics of Inhomogeneous Medium (Springer-Verlag, 1990).
Kuratsuji, H. & Iida, S. Deformation of symplectic structure and anomalous commutators in field theories. Phys. Rev. D 37, 441–447 (1988).
Rytov, S.М. Dokl. Akad. Nauk. SSSR 18, 263–265 (1938). Reprinted in Markovski, B. & Vinitsky, S. I. (eds) Topological Phases in Quantum Theory (World Scientific, 1989).
Vladimirskii, V. V. Dokl. Akad. Nauk. SSSR 31, 222–224 (1941). Reprinted in Markovski, B. & Vinitsky, S. I. (eds) Topological Phases in Quantum Theory (World Scientific, 1989).
Ross, J. N. The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects. Opt. Quant. Electron. 16, 455–461 (1984).
Chiao, R. Y. & Wu, Y. S. Manifestations of Berry topological phase for the photon. Phys. Rev. Lett. 57, 933–936 (1986).
Tomita, A. & Chiao, R. Y. Observation of Berry topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937–940 (1986).
Berry, M. V. Interpreting the anholonomy of coiled light. Nature 326, 277–278 (1987).
Lipson, S. G. Berry's phase in optical interferometry— a simple derivation. Opt. Lett. 15, 154–155 (1990).
Thouless, D. J., Ao, P. & Niu, Q. Transverse force on a quantized vortex in a superfluid. Phys. Rev. Lett. 76, 3758–3761 (1996).
Born, M. & Wolf, E. Principles of Optics Ed. 6 (Pergamon, 1980).
Collet, E. Polarized Light (Marcel Dekker, 1993).
Fedoseev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Opt. Commun. 193, 9–18 (2001).
Acknowledgements
We are indebted to P.A. Horváthy, C. Duval and Y.A. Kravtsov for fruitful correspondence. The work by K.B. is supported by the Linkage International Grant of the Australian Research Council.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 335 kb)
Rights and permissions
About this article
Cite this article
Bliokh, K., Niv, A., Kleiner, V. et al. Geometrodynamics of spinning light. Nature Photon 2, 748–753 (2008). https://doi.org/10.1038/nphoton.2008.229
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.229