A chirped photonic-crystal fibre

Abstract

Photonic crystals have widely increased the facility to guide and confine light at wavelengths close to the optical wavelength1,2,3. Because they can include extremely sharp bends, photonic-crystal waveguides are a key element in future integrated optical devices4. Moreover, they enable the manipulation of the spontaneous emission properties of luminescent devices5, the localization of light in microcavities6, and they may serve to generate negative refraction7,8. A special class of these devices are the hollow-core photonic-crystal fibres9,10,11, which confine the light by means of a periodic cladding, consisting of several layers of identical cells. This design resonantly decreases the transmission losses of such fibres to values of a few dB km−1 in a narrow wavelength range. However, the rather narrowband transmission bands and the detrimental third-order dispersion characteristics of this single-cell design generally render application of such hollow-core fibres difficult in the femtosecond range12. Therefore, no fibre-based concept can currently provide guiding of sub-100 fs pulses over extended distances. By introducing a radial chirp into the photonic crystal, we here demonstrate a novel concept for photonic-crystal fibres that breaks with the paradigm of lattice homogeneity and enables a new degree of freedom in photonic-crystal-fibre design, eliminating much of the pulse duration restriction of earlier approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Concept of a chirped photonic-crystal fibre.
Figure 2: Fibre geometry.
Figure 3: Results of numerical simulations and optical characterization of the chirped hollow fibres.
Figure 4: Effect of geometry on pulse duration and effective nonlinearity.

References

  1. 1

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  2. 2

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Article  Google Scholar 

  3. 3

    Joannopoulos, J., Villeneuve, P. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    ADS  Article  Google Scholar 

  4. 4

    Lin, S.-Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos, J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Petrov, E. P., Bogomolov, V. N., Kalosha, I. I. & Gaponenko, S. V. Spontaneous emission of organic molecules embedded in a photonic crystal. Phys. Rev. Lett. 81, 77–80 (1998).

    ADS  Article  Google Scholar 

  6. 6

    Foresi, J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997).

    ADS  Article  Google Scholar 

  7. 7

    Gralak, B., Enoch, S. & Tayeb, G. Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17, 1012–1020 (2000).

    ADS  Article  Google Scholar 

  8. 8

    Notomi, M. Theory of light propagation in strongly modulated photonic crystals: Refraction-Like behaviour in the vicinity of the photonic band gap. Phys. Rev. B 90, 10696–10705 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Knight, J., Broeng, J., Birks, T. & Russell, P. St. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).

    Article  Google Scholar 

  10. 10

    Bjarklev, A., Broeng, J. & Bjarklev, A. S. Photonic Crystal Fibres (Kluwer, 2003).

  11. 11

    Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    ADS  Article  Google Scholar 

  12. 12

    Luan, F. et al. Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers. Opt. Express 12, 835–840 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Szipőcs, R., Ferencz, K., Spielmann, C. & Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

    ADS  Article  Google Scholar 

  14. 14

    Matuschek, N., Kärtner, F. X. & Keller, U. Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics. IEEE J. Quant. Electron. 35, 129–137 (1999).

    ADS  Article  Google Scholar 

  15. 15

    Ouellette, F. Dispersion cancellation using linearly chirped Bragg grating filters in optical wave-guides. Opt. Lett. 12, 847–849 (1987).

    ADS  Article  Google Scholar 

  16. 16

    Baba, T., Mori, D., Inoshita, K. & Kuroki, Y. Light localizations in photonic crystal line defect waveguides. IEEE J. Sel. Top. Quant. Electron. 10, 484–491 (2004).

    ADS  Article  Google Scholar 

  17. 17

    Mori, D. & Baba, T. Dispersion-controlled optical group delay device by chirped photonic crystal waveguides. Appl. Phys. Lett. 85, 1101–1103 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Saitoh, K., Koshiba, M., Hasegawa, T. & Sasaoka, E. Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Opt. Express 11, 843–852 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Li, J., Xue, L. J., Wang, Z. & Han, Y. C. Colloidal photonic crystals with a graded lattice-constant distribution. Colloid. Polym. Sci. 285, 1037–1041 (2007).

    Article  Google Scholar 

  20. 20

    Cregan, R. F. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  21. 21

    Marcatili, E. A. & Schmeltzer, R. A. Hollow metallic and dielectric waveguide for long distance optical transmission and programmable dispersion control. AT&T Tech. J. 43, 1783–1809 (1964).

    Google Scholar 

  22. 22

    Nisoli, M. et al. Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522–524 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, P. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    ADS  Article  Google Scholar 

  25. 25

    Ouzounov, O. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Husakou, A. & Herrmann, J. Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides. Opt. Express 16, 3834–3843 (2008).

    ADS  Article  Google Scholar 

  27. 27

    Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. M. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996).

    ADS  Article  Google Scholar 

  28. 28

    Collins, H. C. et al. Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nature Photon. 2, 420–424 (2008).

    Article  Google Scholar 

  29. 29

    Reynaud, F., Salin, F. & Barthelemy, A. Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses. Opt. Lett. 14, 275–277 (1989).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

R.I. gratefully acknowledges financial support from the Carl Zeiss foundation. The authors gratefully acknowledge T. Elsaesser, Max Born Institute, Berlin, for his support and stimulating discussions.

Author information

Affiliations

Authors

Contributions

J.S.S. and V.I.B. designed and manufactured the fibre. R.I. numerically computed the propagation constants and mode fields of the different fibre geometries. J.B., M.B., and D.F. performed the optical characterization measurements. V.I.B., R.W., and G.S. conceived the original design of the fibre. G.S. performed the data analysis and wrote the draft of the manuscript.

Corresponding author

Correspondence to Günter Steinmeyer.

Supplementary information

Supplementary Information

Supplementary Information (PDF 77 kb)

Supplementary Information

Supplementary Information (AVI 4842 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skibina, J., Iliew, R., Bethge, J. et al. A chirped photonic-crystal fibre. Nature Photon 2, 679–683 (2008). https://doi.org/10.1038/nphoton.2008.203

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing