Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic photon sorters for spectral and polarimetric imaging

Abstract

Colour cameras mimic the human eye and record only a small part of the information contained in the incoming light. Modern image sensing techniques, which subdivide the light spectrally or record information about the polarization of the incoming light, can extract much more information for applications ranging from biological studies to remote sensing1,2,3,4,5. Spectral imaging techniques6 typically rely on filters or interferometers combined with scanning or subsampling to record a spectral image ‘cube’ (which has wavelength as a third dimension). This leads to inefficient use of the incoming light and/or long recording times. Here, we show that surface plasmons enable direct recording of spectral image cubes in a single exposure. By texturing metal surfaces at the nanometre scale, incoming light is converted to surface plasmons and can then be separated according to wavelength and polarization, before being recoupled to light through subwavelength apertures that illuminate individual photodetector elements. This photon-sorting capability provides a new approach for spectral and polarimetric imaging with extremely compact device archictures.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Basic bull's eye structure for photon sorting.
Figure 2: Photon-sorting efficiency of triple bull's eye structure.
Figure 3: Photon sorting with slit structures.
Figure 4: Polarization response of slit–groove lattice.

References

  1. Groner, W. et al. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nature Med. 5, 1209–1213 (1999).

    Article  Google Scholar 

  2. Levenson, R. E. & Hoyt, C. C. Spectral imaging and microscopy. Am. Lab. 32, 26–34 (2000).

    Google Scholar 

  3. Dickinson, M. E., Bearman G., Tille S., Lansford, R. & Fraser, S. E. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 1272–1278 (2001).

    Article  Google Scholar 

  4. Stenflo, J. O. & Povel, H. Astronomical polarimeter with 2D detector arrays. Appl. Opt. 24, 3893–3898 (1985).

    ADS  Article  Google Scholar 

  5. Landgrebe, D. A., Serpico S. B., Crawford, M. M. & Singhroy, V. Introduction to the special issue on analysis of hyperspectral image data. IEEE Trans Geosci. Remote 39, 1343–1345 (2001).

    ADS  Article  Google Scholar 

  6. Harvey, A. R., Beale, J. E., Greenaway, A. H., Hanlon, T. J. & Williams, J. W. Technology options for imaging spectrometry. Proc. SPIE 4132, 13–24 (2000).

    ADS  Article  Google Scholar 

  7. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  8. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    ADS  Article  Google Scholar 

  9. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    ADS  Article  Google Scholar 

  10. Mikhailov, V., Wurtz, G., Elliot, J., Bayvel, P. & Zayats, A. V. Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 99, 083901 (2007).

    ADS  Article  Google Scholar 

  11. Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).

    Article  Google Scholar 

  12. Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001).

    ADS  Article  Google Scholar 

  13. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).

    ADS  Article  Google Scholar 

  14. Garcia-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martin-Moreno, L. Multiple paths to enhance optical transmission through a subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003).

    ADS  Article  Google Scholar 

  15. Genet, C., van Exeter, M. P. & Woerdman, J. P. Fano-type interpretation of red-shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003).

    ADS  Article  Google Scholar 

  16. Sarrazin, M., Vigneron, J.-P. & Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003).

    ADS  Article  Google Scholar 

  17. Ishi, T., Fujikata, J. & Ohashi, K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating. Jpn J. Appl. Phys. 44, L170–L172 (2005).

    ADS  Article  Google Scholar 

  18. Garcia-Vidal, F. J., Martin-Moreno, L., Lezec, H. J. & Ebbesen, T. W. Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003).

    ADS  Article  Google Scholar 

  19. Bayer, B. E. Colour imaging array. US patent 3,971,065 (1976).

  20. Garini, Y., Young, I. T. & McNamara, G. Spectral imaging: principles and applications. Cytometry 69A, 735–747 (2006).

    Article  Google Scholar 

  21. Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Straw, J. Review of passive imaging polarimetry for remote sensing applications. Appl Opt. 45, 5453–5469 (2006).

    ADS  Article  Google Scholar 

  22. Merril, R. B. Colour separation in an active pixel cell imaging array using a triple-well structure. US patent 5,965,875 (1999).

  23. Descour, M. & Dereniak, E. Computed tomography imaging spectrometer—experimental calibration and reconstruction results. Appl. Opt. 34, 4817–4826 (1995).

    ADS  Article  Google Scholar 

  24. Harvey, A. R. & Fletcher-Holmes, D. R. High-throughput snapshot spectral imaging in two dimensions. Proc. SPIE 4959, 46–54 (2003).

    ADS  Article  Google Scholar 

  25. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    ADS  Article  Google Scholar 

  26. Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    ADS  Article  Google Scholar 

  27. Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 44, L364–L366 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the European Community, project no. IST-FP6-034506 ‘PLEAS’. The authors are grateful for the support of O. Mahboub, J.-Y. Laluet and F. Przybilla.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Laux, Cyriaque Genet, Torbjorn Skauli or Thomas W. Ebbesen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laux, E., Genet, C., Skauli, T. et al. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon 2, 161–164 (2008). https://doi.org/10.1038/nphoton.2008.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing