Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultralow-dissipation optomechanical resonators on a chip

Abstract

Cavity-enhanced radiation-pressure coupling of optical and mechanical degrees of freedom gives rise to a range of optomechanical phenomena, in particular providing a route to the quantum regime of mesoscopic mechanical oscillators. A prime challenge in cavity optomechanics has been to realize systems that simultaneously maximize optical finesse and mechanical quality. Here we demonstrate, for the first time, independent control over both mechanical and optical degrees of freedom within the same on-chip resonator. The first direct observation of mechanical normal mode coupling in a micromechanical system allows for a quantitative understanding of mechanical dissipation. Subsequent optimization of the resonator geometry enables intrinsic material loss limited mechanical Q-factors, rivalling the best values reported in the high megahertz frequency range, while simultaneously preserving the resonators' ultrahigh optical finesse. As well as providing a complete understanding of mechanical dissipation in microresonator-based optomechanical systems, our results provide a promising setting for cavity optomechanics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of mechanical normal mode coupling.
Figure 2: Linear relation between D and measured Q-factors.
Figure 3: Novel optomechanical spoke-supported resonators.
Figure 4: Ultralow dissipation spoke-supported microresonators.
Figure 5: Temperature dependence of mechanical dissipation.
Figure 6: Schematic of the polarization spectroscopy setup.

Similar content being viewed by others

References

  1. Braginsky, V. & Manukin, A. Measurement of Small Forces in Physics Experiments. (The University of Chicago Press, 1977).

    Google Scholar 

  2. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  3. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  4. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidman, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  5. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  6. Dykman, M. I. Heating and cooling of local and quasilocal vibrations by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1978).

    Google Scholar 

  7. Braginsky, V. B. & Vyatchanin, S. P. Low quantum noise tranquilizer for Fabry–Perot interferometer. Phys. Lett. A 293, 228–234 (2002).

    Article  ADS  Google Scholar 

  8. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  9. Schliesser, A., Anetsberger, G., Rivière, R., Arcizet, O. & Kippenberg, T. J. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. (in the press).

  10. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  11. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  12. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  13. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  14. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  15. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  16. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  17. Thompson, J. D. et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  18. Briant, T., Cohadon, P.-F., Heidmann, A. & Pinard, M. Optomechanical characterization of acoustic modes in a mirror. Phys. Rev. A 68, 033823 (2003).

    Article  ADS  Google Scholar 

  19. Verbridge, S., Shapiro, D., Craighead, H. & Parpia, J. Macroscopic Tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728–1735 (2007).

    Article  ADS  Google Scholar 

  20. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  21. Clark, J., Hsu, W.-T., Abdelmoneum, M. A. & Nguyen, C.-C. High-Q UHF micromechanical radial-contour mode disk resonators. J. Microelectromech. Syst. 14, 1298–1310 (2005).

    Article  Google Scholar 

  22. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  ADS  Google Scholar 

  23. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  ADS  Google Scholar 

  24. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett. 85, 6113–6115 (2004).

    Article  ADS  Google Scholar 

  25. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1992).

    Article  ADS  Google Scholar 

  26. Grudinin, I. S. et al. Ultra high Q crystalline microcavities. Opt. Commun. 265, 33–38 (2006).

    Article  ADS  Google Scholar 

  27. Rokhsari, H., Kippenberg, T., Carmon, T. & Vahala, K. Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities. IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).

    Article  ADS  Google Scholar 

  28. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  29. Mindlin, R. D. Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  30. Schliesser, A., Rivière., R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    Article  ADS  Google Scholar 

  31. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  32. Pohl, R. O., Liu, X. & Thompson, E. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74, 991–1013 (2002).

    Article  ADS  Google Scholar 

  33. Vacher, R., Courtens, E. & Foret, M. Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica. Phys. Rev. B 72, 214205 (2005).

    Article  ADS  Google Scholar 

  34. Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  35. Hossein-Zadeh, M. & Vahala, K. J. IEEE Photon. Tech. Lett. 20, 234–236 (2008).

    Article  ADS  Google Scholar 

  36. Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 77, 245418 (2008).

    Article  ADS  Google Scholar 

  37. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669–1671 (2002).

    Article  ADS  Google Scholar 

  38. Rat, E. et al. Anharmonic versus relaxational sound damping in glasses. I. Brillouin scattering from densified silica. Phys. Rev. B 72, 214204 (2005).

    Article  ADS  Google Scholar 

  39. Zener, C. Internal friction in solids I. Phys. Rev. 52, 230–235 (1937).

    Article  ADS  Google Scholar 

  40. Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

    Article  ADS  Google Scholar 

  41. Ma, R. et al. Radiation-pressure driven vibrational modes in ultrahigh-Q silica microspheres. Opt. Lett. 32, 2200–2002 (2007).

    Article  ADS  Google Scholar 

  42. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007).

    Article  ADS  Google Scholar 

  43. Kiraz, A. et al. Cavity-quantum electrodynamics using a single In As quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001).

    Article  ADS  Google Scholar 

  44. Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    Article  ADS  Google Scholar 

  45. Hänsch, T. & Couillaud, B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980).

    Article  ADS  Google Scholar 

  46. Bansal, N. P. & Doremus, R. H. Handbook of Glass Properties. (Academic Press, Orlando, 1986)).

    Google Scholar 

Download references

Acknowledgements

T.J.K acknowledges support from an Independent Max Planck Junior Research Group grant, a Marie Curie Excellence grant (JRG-UHQ), the DFG-funded Nanosystems Initiative Munich (NIM) and a Marie Curie Reintegration grant (RG-UHQ). The authors gratefully thank J. Kotthaus, A. Rogach and F. Bürsgens for access to cleanroom facilities for microfabrication, A. Marx for assistance in scanning electron microscopy and I. Wilson-Rae for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Kippenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anetsberger, G., Rivière, R., Schliesser, A. et al. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon 2, 627–633 (2008). https://doi.org/10.1038/nphoton.2008.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing