Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source

Abstract

The efficient delivery of photons from light sources to photonic circuits is central to any fibre-optic or integrated optical system. Coupling light emitters to optical fibres or waveguides determines the photon flux available in, and therefore the performance of, photonic devices used in applications such as optical communication and information processing. Many solutions have been proposed to improve impedance matching in light-emitting diode-to-fibre or photonic-crystal cavity-to-waveguide systems; however, the efficient coupling of integrated light sources into nanophotonic circuits remains a challenge. Here, we propose an optically or electrically driven photonic structure that uses active semiconductor nanowires to light up photonic-crystal waveguides. The photonic crystal is used to either guide or filter out different colours of light as desired. In addition, we report an active nanowire-based optical structure that can generate two different colours of light and then send them in opposite directions. The hybrid nanowire/photonic-crystal waveguide represents a significant advance towards all-optical processing in nanoscale integrated photonic circuits and a new addition to the nanophotonic toolbox.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical injection from the CdS semiconductor nanowire into the photonic-crystal waveguide.
Figure 2: Light injection from an electrically driven nanowire LED structure into a photonic-crystal waveguide.
Figure 3: Characterization and modelling of the wavelength-selective nanowire/photonic-crystal structure.
Figure 4: PL study of the wavelength-selective nanowire/photonic-crystal structure.

Similar content being viewed by others

References

  1. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  2. Shani, Y., Henry, C. H., Kistler, R. C., Orlowsky, K. J. & Ackerman, D. A. Efficient coupling of a semiconductor-laser to an optical fiber by means of a tapered waveguide on silicon. Appl. Phys. Lett. 55, 2389–2391 (1989).

    Article  ADS  Google Scholar 

  3. Xu, Y., Lee, R. K. & Yariv, A. Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry. Opt. Lett. 25, 755–757 (2000).

    Article  ADS  Google Scholar 

  4. Olivier, S. et al. Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design. IEEE J. Quantum Electron. 38, 816–824 (2002).

    Article  ADS  Google Scholar 

  5. McNab, S. J., Moll, N. & Vlasov, Y. A. Ultra-low-loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003).

    Article  ADS  Google Scholar 

  6. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H.-Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    Article  ADS  Google Scholar 

  7. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    Article  ADS  Google Scholar 

  8. Barclay, P. E., Srinivasan, K., Borselli, M. & Painter, O. Efficient input and output fiber coupling to a photonic crystal waveguide. Opt. Lett. 29, 697–699 (2004).

    Article  ADS  Google Scholar 

  9. Benisty, H., Lourtioz, J. M., Chelnokov, A., Combrie, S. & Checoury, X. Recent advances toward optical devices in semiconductor-based photonic crystals. Proc. IEEE 94, 997–1023 (2006).

    Article  Google Scholar 

  10. Yu, P. C., Topolancik, J., Chakravarty, S. & Bhattacharya, P. Mode-coupling characteristics and efficiency of quantum-dot electrically injected photonic crystal waveguide-coupled light-emitting diodes. IEEE J. Quantum Electron. 41, 455–460 (2005).

    Article  ADS  Google Scholar 

  11. Barrelet, C. J., Greytak, A. B. & Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 4, 1981–1985 (2004).

    Article  ADS  Google Scholar 

  12. Qian, F., Gradecak, S., Li, Y., Wen, C. Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005).

    Article  ADS  Google Scholar 

  13. Mekis, A. et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).

    Article  ADS  Google Scholar 

  14. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  15. Barrelet, C. J. et al. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11–15 (2006).

    Article  ADS  Google Scholar 

  16. Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics, Internet Version 2007, 87th edn (Taylor & Francis, Boca Raton, FL, 2007).

    Google Scholar 

  17. Barrelet, C. J., Wu, Y., Bell, D. C. & Lieber C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003).

    Article  Google Scholar 

  18. Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  19. Johnson, S. G., Fan, S. H., Villeneuve, P. R., Joannopoulos, J. D. & Kolodziejski, L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999).

    Article  ADS  Google Scholar 

  20. Loncar, M., Vuckovic, J. & Scherer, A. Methods for controlling positions of guided modes of photonic-crystal waveguides. J. Opt. Soc. Am. B 18, 1362–1368 (2001).

    Article  ADS  Google Scholar 

  21. Ayre, M., Karle, T. J., Wu, L. J., Davies, T. & Krauss, T. F. Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend. IEEE J. Sel. Areas Commun. 23, 1390–1395 (2005).

    Article  Google Scholar 

  22. Khoo, E. H., Liu, A. Q. & Wu, J. H. Nonuniform photonic crystal taper for high-efficiency mode coupling. Opt. Express 13, 7748–7759 (2005).

    Article  ADS  Google Scholar 

  23. Baba, T., Iwai, T., Fukaya, N., Watanabe, Y. & Sakai, A. Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron. 38, 743–752 (2002).

    Article  ADS  Google Scholar 

  24. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  25. Qian, F. et al. Gallium-nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004).

    Article  ADS  Google Scholar 

  26. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  ADS  Google Scholar 

  27. Song, B. S., Noda, S. & Asano, T. Photonic devices based on in-plane hetero photonic crystals. Science 300, 1537 (2003).

    Article  Google Scholar 

  28. Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. K. Yang, M. K. Seo, S. H. Kwon and Y. H. Lee for help with FDTD simulation and W. I. Park for help with fabrication. This work was supported by the Air Force Office of Scientific Research. H.G.P. acknowledged the support of this work by OPERA of the KOSEF and the Seoul R & BD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gyu Park.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HG., Barrelet, C., Wu, Y. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon 2, 622–626 (2008). https://doi.org/10.1038/nphoton.2008.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing