Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces


Metamaterials are artificial materials with subwavelength structure1 that enable the translation of magnetic2 and electric responses3 into spectral regions not accessible through naturally occurring materials. Here, we report direct measurements of the propagation and confinement of terahertz electromagnetic surface modes tightly bound to flat plasmonic metamaterials that consist of metal surfaces decorated with two-dimensional arrays of subwavelength-periodicity pits. These modes are surface plasmon polaritons with an effective plasma frequency controlled entirely by the surface geometry4. The mode spectrum and penetration depth into air demonstrate strong wavelength-scale energy confinement to the surface below the electromagnetic band edge; this is in stark contrast to the very weak confinement found at flat metal surfaces in this spectral regime. The results are in good agreement with analytical and numerical models of surface plasmon polaritons propagating on structured perfect-conductor surfaces, and imply that plasmonic metamaterials could help miniaturize optical components or lead to improved chemical or biochemical sensors.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Plasmonic metamaterial geometries under study.
Figure 2: Schematic of the experimental arrangement to study SPP propagation.
Figure 3: THz signals and their spectra.
Figure 4: Numerical simulations of spoof SPP propagation.
Figure 5: Experimental (points) and theoretical (shaded bands) electric-field amplitudes as a function of h3.


  1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    ADS  Article  Google Scholar 

  2. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    ADS  Article  Google Scholar 

  3. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic meso structures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    ADS  Article  Google Scholar 

  4. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    ADS  Article  Google Scholar 

  5. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, New York, 1996).

    Book  Google Scholar 

  6. Ferguson, B. & Zhang, X.-C. Materials for THz science and technology. Nature Mater. 1, 26–33 (2002).

    ADS  Article  Google Scholar 

  7. Strachan, C. J. et al. Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J. Pharm. Sci. 94, 837–846 (2005).

    Article  Google Scholar 

  8. Nagel, M. et al. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156 (2002).

    ADS  Article  Google Scholar 

  9. Yamamoto, K. et al. Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy. Jpn J. Appl. Phys. 43, L414–L417 (2004).

    ADS  Article  Google Scholar 

  10. Zhang, J. & Grischkowsky, D. Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29, 1617–1619 (2004).

    ADS  Article  Google Scholar 

  11. Kurt, H. & Citrin, D. S. Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region. Appl. Phys. Lett. 87, 24119–241121 (2005).

    Google Scholar 

  12. Maier, S. A. Plasmonics—Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  13. O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photothermal tumor ablation in mice using near infrared absorbing nanoshells. Cancer Lett. 209, 171–176 (2004).

    Article  Google Scholar 

  14. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  15. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS  Article  Google Scholar 

  16. Saxler, J. et al. Time-domain measurements of surface plasmon polaritons in the terahertz frequency range. Phys. Rev. B 69, 155427 (2004).

    ADS  Article  Google Scholar 

  17. Wang, K. & Mittleman, D. M. Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004).

    ADS  Article  Google Scholar 

  18. Jeon, T.-I. & Grischkowsky, D. THz Zenneck surface wave propagation on a metal sheet. Appl. Phys. Lett. 88, 061113 (2006).

    ADS  Article  Google Scholar 

  19. Gómez-Rivas, J., Kuttge, M., Haring Bolivar, P., Kurz, H. & Sánchez-Gil, J. A. Propagation of surface plasmon polaritons on semiconductor gratings. Phys. Rev. Lett. 93, 256804 (2004).

    ADS  Article  Google Scholar 

  20. Goubau, G. Surface waves and their application to transmission lines. J. Appl. Phys. 21, 1119–1128 (1950).

    ADS  MathSciNet  Article  Google Scholar 

  21. Mills, D. L. & Maradudin, A. A. Surface corrugation and surface-polariton binding in the infrared frequency range. Phys. Rev. B 39, 1569–1574 (1989).

    ADS  Article  Google Scholar 

  22. Ulrich, R. & Tacke, M. Submillimeter waveguiding on periodic metal structure. Appl. Phys. Lett. 22, 251–253 (1973).

    ADS  Article  Google Scholar 

  23. Hibbins, A. P., Evans, B. R. & Sambles, J. R. Experimental verification of designer surface plasmons. Science 308, 670–672 (2005).

    ADS  Article  Google Scholar 

  24. Garcia-Vidal, F. J., Martin-Moreno, L. & Pendry, J. B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A 7, S97–S101 (2005).

    ADS  Article  Google Scholar 

  25. Maier, S. A. & Andrews, S. R. Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl. Phys. Lett. 88, 251120 (2006).

    ADS  Article  Google Scholar 

  26. Jepsen, P. U., Jacobsen, R. H. & Keiding, S. R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B 13, 2424–2436 (1996).

    ADS  Article  Google Scholar 

  27. Andrews, S. R., Armitage, A., Huggard, P. G. & Hussain, A. Optimization of photoconducting receivers for THz spectroscopy. Phys. Med. Biol. 47, 3705–3710 (2002).

    Article  Google Scholar 

  28. Zhizhin, G. N., Moskalova, M. A., Shomina, E. V. & Yakovlev, V. A. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (eds Agranovich, V. M. & Mills, D. L. ) (North Holland, Amsterdam, 1982).

    Google Scholar 

Download references


This work was supported by the Air Force Office of Scientific Research (AFOSR) (FA9550-05-1-0488) and the Royal Society. Financial support from the Spanish Ministerio de Educación y Ciencia (MEC) under contract MAT2005-06608-C02 and from the EU under project FP6-2002-IST-1-507879 (Plasmo-Nano-Devices) is also gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to S. A. Maier or F. J. García-Vidal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, C., Andrews, S., Maier, S. et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon 2, 175–179 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing