Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-frequency single-photon source with polarization control


Optoelectronic devices that provide non-classical light states on demand have a broad range of applications in quantum information science1, including quantum‐key‐distribution systems2, quantum lithography3 and quantum computing4. Single-photon sources5,6 in particular have been demonstrated to outperform key distribution based on attenuated classical laser pulses7. Implementations based on individual molecules8, nitrogen vacancy centres9 or dopant atoms10 are rather inefficient owing to low emission rates, rapid saturation and the lack of mature cavity technology. Promising single-photon-source designs combine high-quality microcavities11 with quantum dots as active emitters12. So far, the highest measured single-photon rates are 200 kHz using etched micropillars13,14. Here, we demonstrate a quantum-dot-based single-photon source with a measured single-photon emission rate of 4.0 MHz (31 MHz into the first lens, with an extraction efficiency of 38%) due to the suppression of exciton dark states. Furthermore, our microcavity design provides mechanical stability, and voltage-controlled tuning of the emitter/mode resonance and of the polarization state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPS device design.
Figure 2: Influence of gate voltage on SPS performance.
Figure 3: Single QD characterizations.
Figure 4: Impact of QD charging on SPS performance.
Figure 5: Demonstration of polarization control.


  1. Bouwmeester, D., Ekert, A. K. & Zeilinger A. The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  3. Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    Article  ADS  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  5. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    Article  ADS  Google Scholar 

  6. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  7. Waks, E. et al. Quantum cryptography with a photon turnstile. Nature 420, 762 (2002).

    Article  ADS  Google Scholar 

  8. Lee, T.-H. et al. Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon source. Appl. Phys. Lett. 85, 100–102 (2004).

    Article  ADS  Google Scholar 

  9. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  ADS  Google Scholar 

  10. Strauf, S. et al. Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 89, 177403 (2002).

    Article  ADS  Google Scholar 

  11. Vahala, K. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  12. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  13. Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article  ADS  Google Scholar 

  14. Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004).

    Article  ADS  Google Scholar 

  15. Stoltz, N. G. et al. High-quality factor optical microcavity using oxide apertured micropillars. Appl. Phys. Lett. 87, 031105 (2005).

    Article  ADS  Google Scholar 

  16. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  ADS  Google Scholar 

  17. Chang, W.-H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    Article  ADS  Google Scholar 

  18. Takemoto, K. et al. An optical horn structure for single-photon source using quantum dots at telecommunication wavelength J. Appl. Phys. 101, 081720 (2007).

    Article  ADS  Google Scholar 

  19. Colvin, V., Schlamp. M. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  20. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  ADS  Google Scholar 

  21. Gur, I., Fromer, M. A., Geier, M. L. & Alivisatos, A. P. Air-stable all inorganic nanocrystal solar cell processed from solution. Science 310, 462–465 (2005).

    Article  ADS  Google Scholar 

  22. Urayama, J., Norris, T. B., Singh, J. & Bhattacharya, P. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930–4933 (2001).

    Article  ADS  Google Scholar 

  23. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  ADS  Google Scholar 

  24. Warburton, R. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

  25. Holtz, P. O. et al. Enhanced luminescence from InAs/GaAs quantum dots. Proc. SPIE 6401, 64010I (2006).

    Article  Google Scholar 

  26. Waks, E., Santori, C. & Yamamoto, Y. Security aspect of quantum key distribution with sub-Poissonian light. Phys. Rev. A 66, 042315 (2002).

    Article  ADS  Google Scholar 

  27. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    Article  ADS  Google Scholar 

  28. Unitt, D. C., Bennett, A. J., Atkinson, P., Ritchie, D. A. & Shields, A. J. Polarization control of quantum dot single-photon sources by means of dipole-dependent Purcell effect. Phys. Rev. B 72, 033318 (2006).

    Article  ADS  Google Scholar 

  29. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

Download references


We would like to thank D. Cohen for fruitful discussions. This work was supported through DARPA, NSF and ARO grants.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Strauf.

Supplementary information

Supplementary Information

Supplementary information and figures S1, S2 (PDF 170 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strauf, S., Stoltz, N., Rakher, M. et al. High-frequency single-photon source with polarization control. Nature Photon 1, 704–708 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing