Bright, multicoloured light-emitting diodes based on quantum dots


Quantum-dot-based LEDs are characterized by pure and saturated emission colours with narrow bandwidth, and their emission wavelength is easily tuned by changing the size of the quantum dots. However, the brightness, efficiency and lifetime of LEDs need to be improved to meet the requirements of commercialization in the near future. Here, we report red, orange, yellow and green LEDs with maximum luminance values of 9,064, 3,200, 4,470 and 3,700 cd m−2, respectively, the highest values reported so far. Solution-processable core–shell quantum dots with a CdSe core and a ZnS or CdS/ZnS shell were used as emissive layers in the devices. By optimizing the thicknesses of the constituent layers of the devices, we were able to develop quantum-dot-based LEDs with improved electroluminescent efficiency (1.1–2.8 cd A−1), low turn-on voltages (3–4 V) and long operation lifetimes. These findings suggest that such quantum-dot-based LEDs will be promising for use in flat-panel displays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structures, images and HOMO and LUMO energy levels of the QD-LEDs.
Figure 2: Electroluminescence performance of the QD-LEDs.
Figure 3: Lifetime characteristics of a red-emitting QD-LED.
Figure 4: Effect of QD layer thickness on EL performance of the QD-LEDs.
Figure 5: EL efficiency versus current plots of the red-emitting QD-LEDs with an HTL of 45 nm, a QD layer of 2 ML and different ETL thicknesses.


  1. 1

    Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

  2. 2

    Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. & Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

  3. 3

    Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

  4. 4

    Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

  5. 5

    Hikmet, R. A. M., Chin, P. T. K., Talapin, D. V. & Weller, H. Polarized-light-emitting quantum-rod diodes. Adv. Mater. 17, 1436–1439 (2005).

  6. 6

    Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005).

  7. 7

    Schlamp, M. C., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

  8. 8

    Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Edn 45, 5796–5799 (2006).

  9. 9

    Steckel, J. S. et al. Blue luminescence from (CdS)ZnS core–shell nanocrystals. Angew. Chem. Int. Edn 43, 2154–2158 (2004).

  10. 10

    Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

  11. 11

    Zhao, J. et al. Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J. Appl. Phys. 96, 3206–3210 (2004).

  12. 12

    Chaudhary, S., Ozkan, M. & Chan, W. C. W. Trilayer hybrid polymer-quantum dot light-emitting diodes. Appl. Phys. Lett. 84, 2925–2927 (2004).

  13. 13

    Gao, M. et al. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J. Appl. Phys. 87, 2297–2302 (2000).

  14. 14

    O'Connor, E. et al. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays. Appl. Phys. Lett. 86, 201114 (2005).

  15. 15

    Steckel, J. S. & Bowendi, M. G. 1.3–1.55 µm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1682–1686 (2003).

  16. 16

    Bakueva, L. et al. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 82, 2895–2897 (2003).

  17. 17

    Murray, C. B. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

  18. 18

    Qu, L. & Peng, X. Control of photoluminescence properties of CdSe nanocrystals. J. Am. Chem. Soc. 124, 2049–2056 (2002).

  19. 19

    Coe-Sullivan, S., Steckel, J. S., Kim, L. A., Bawendi, M. G. & Bulović, V. Method for fabrication of saturated RGB quantum dot light emitting devices. Proc. SPIE 5739, 108–115 (2005).

  20. 20

    Li, Y. Q. et al. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. J. Appl. Phys. 97, 113501 (2005).

  21. 21

    Xu, J. et al. Microcavity light emitting devices based on colloidal semiconductor nanocrystal quantum dots. IEEE Photon. Technol. Lett. 17, 2008–2010 (2005).

  22. 22

    Peng, Z. A. & Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

  23. 23

    Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

  24. 24

    Qu, L., Peng, Z. A. & Peng, X. Alternative routes towards high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

  25. 25

    Carter, J. C. et al. Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene). Appl. Phys. Lett. 71, 34–36 (1997).

  26. 26

    Sun, Q. J. et al. White light from polymer light-emitting diodes: utilization of fluorenone defects and exciplex. Appl. Phys. Lett. 88, 163510 (2006).

  27. 27

    Sun, Q. J., Hou, J. H., Yang, C. H., Li, Y. F. & Yang, Y. Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers. Appl. Phys. Lett. 89, 153501 (2006).

  28. 28

    Tang C. W. & Van Slyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

  29. 29

    Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15, 2854–2860 (2003).

Download references


This work was supported by the Ministry of Science and Technology of China (973 project, No. 2002CB613404) and NSFC (No. 20421101 and 50633050). Y.A.W. acknowledges funding from the National Science Foundation SBIR program (award number: 0638209). We thank Ghassan Jabbour for the calculation of the CIE of the QD-LED emission.

Author information

Q.J.S., C.H.Y. and Y.F.L. designed, fabricated and characterized the devices. Y.A.W., L.S.L. and D.Y.W. designed and synthesized the quantum dots. T.Z. and J.X. measured the device lifetimes and calculated the thicknesses of the QD layers.

Correspondence to Y. Andrew Wang or Yongfang Li.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S3 (PDF 104 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, Q., Wang, Y., Li, L. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photon 1, 717–722 (2007) doi:10.1038/nphoton.2007.226

Download citation

Further reading