Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Slow guided surface plasmons at telecom frequencies

Abstract

The phenomenon of slow light is interesting not only from a fundamental physics standpoint, but also because it introduces the possibility of new applications in telecommunications1. For a practical slow-light device, the important features are bandwidth, range of wavelength tunability and size, rather than the absolute slowdown factor achieved2. Slow light can be achieved in three main ways: through quantum interference effects3,4,5,6,7,8, which can slow the speed of light down to several metres per second, albeit within a very narrow bandwidth; by using photonic crystals9, which are able to slow light over large bandwidths but with much smaller slowdown factors10,11; and by using stimulated Brillouin or Raman scattering12,13. Surface plasmon polaritons have the advantage that they can overcome the diffraction limit of light in a microchip-sized device14,15,16,17. Increases in the propagation lengths of surface plasmon polaritons18 and the feasibility of all-optical wavelength tunability19 have been reported. Here we report the observation of slow, femtosecond surface-plasmon-polariton wavepackets. We show that a highly compact (55 µm length) plasmonic structure is able to achieve an effective slowdown factor of two over a 4 THz bandwidth. These results will increase the scope of photonic devices based on surface plasmon polaritons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical microscope image of the structure under investigation.
Figure 2: Schematic of the experimental set-up.
Figure 3: Optical tracking of an SPP wavepacket.
Figure 4: Measured and calculated group indices for different SPP excitation frequencies.
Figure 5: SPP spectral signature at different positions along the structure.

Similar content being viewed by others

References

  1. Gauthier, D. Slow light brings faster communications. Phys. World 30 December (2005).

  2. Mok, T. J. & Eggleton, B. J. Expect more delays. Nature 433, 811–812 (2005).

    Article  ADS  Google Scholar 

  3. Hau, L. V., Harris S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  4. Lukin, M. D. & Imamoğlu. A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    Article  ADS  Google Scholar 

  5. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002).

    Article  ADS  Google Scholar 

  6. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003).

    Article  ADS  Google Scholar 

  7. Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

    Article  ADS  Google Scholar 

  8. Ku, P. C. et al. Slow light in semiconductor quantum wells. Opt. Lett. 29, 2291–2293 (2004).

    Article  ADS  Google Scholar 

  9. Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) (Kluwer Academic, Dordrecht, The Netherlands, 2001).

  10. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  11. Vlasov Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  12. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  13. Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006).

    Article  ADS  Google Scholar 

  14. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, Germany).

  15. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  16. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  17. Shin, H. & Fan, S. All-angle negative refraction for surface plasmon waves using a metal–dielectric–metal structure. Phys. Rev. Lett. 96, 073907 (2006).

    Article  ADS  Google Scholar 

  18. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  19. Wurtz, G. A., Pollard, R. & Zayats, A. V. Optical bistability in nonlinear surface-plasmon polariton crystals. Phys. Rev. Lett. 97, 057402 (2006).

    Article  ADS  Google Scholar 

  20. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  21. Gómez Rivas, J., Kuttge, M., Haring Bolivar, P., Kurz, H & Sánchez-Gil, J. A. Propagation of surface plasmon polaritons on semiconductor gratings. Phys. Rev. Lett. 93, 256804 (2004).

    Article  ADS  Google Scholar 

  22. Jetté-Charbonneau, S. et al. Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides. Opt. Express 13, 4674–4682 (2005).

    Article  ADS  Google Scholar 

  23. Fainman, Y. Invited lecture at OSA Topical Meeting on Integrated Photonics Research and Applications. IPRA/NANO 2006, Uncasville, USA, 24–26 April 2006.

  24. Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968).

    ADS  Google Scholar 

  25. Balistreri, M. L. M., Gersen, H., Korterik, J. P., Kuipers, L. & van Hulst, N. F. Tracking femtosecond laser pulses in space and time. Science 294, 1080–1082 (2001).

    Article  ADS  Google Scholar 

  26. Betzig, E. & Trautman, J. K. Near-field optics: Microscopy and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  ADS  Google Scholar 

  27. Russel, P. St. J. Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Modern Optics 38, 1599–1619 (1991).

    Article  ADS  Google Scholar 

  28. Settle, M. D. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwith. Opt. Express 15, 219–226 (2007).

    Article  ADS  Google Scholar 

  29. Wilson, W. D. Analyzing biomolecular interactions. Science 295, 2103–2105 (2002).

    Article  ADS  Google Scholar 

  30. McFarland, A. D. & Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was made possible by the facilities of the Amsterdam NanoCenter. The work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO). Support of the EC-funded project PhOREMOST (FP6/2003/IST/2-511616) is gratefully acknowledged. This work was also partially supported by NANONED, a nanotechnology program of the Dutch Ministry of Economic Affairs. The authors thank Rob Engelen for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S. carried out the experiments, analysed the data and wrote the manuscript. L.K. conceived the experiments, helped with the analysis and co-wrote the manuscript.

Corresponding author

Correspondence to L. Kuipers.

Supplementary information

Supplementary Information

Supplementary methods and figure S1 (PDF 109 kb)

Supplementary Information

Supplementary movie (AVI 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandtke, M., Kuipers, L. Slow guided surface plasmons at telecom frequencies. Nature Photon 1, 573–576 (2007). https://doi.org/10.1038/nphoton.2007.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing