Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera


The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N2) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N2-fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: High Crocosphaera abundances located in an anticyclonic eddy coinciding with elevated water column chlorophyll a and productivity.
Figure 2: Sub-populations of Crocosphaera.
Figure 3: Transcriptional network of Crocosphaera.
Figure 4: Diel cascade in Crocosphaera transcripts.
Figure 5: Diel patterns in Crocosphaera abundances and N2 fixation alongside transcript abundances for key genes.


  1. 1

    Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Waterbury, J. B. & Willey, J. M. in Methods in Enzymology Vol. 167 (eds Packer, L. & Glazer, A. N ) 100–105 (Academic, 1988).

    Google Scholar 

  3. 3

    Bench, S. R. et al. Whole genome comparison of six Crocosphaera watsonii strains with differing phenotypes. J. Phycol. 49, 786–801 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Zehr, J. P., Bench, S. R., Mondragon, E. A., McCarren, J. & DeLong, E. F. Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proc. Natl Acad. Sci. USA 104, 17807–17812 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Tuit, C., Waterbury, J. & Ravizza, G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol. Oceanogr. 49, 978–990 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Moisander, P. H. et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327, 1512–1514 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Sato, M. et al. Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean. Aquat. Microbial Ecol. 59, 273–282 (2010).

    Article  Google Scholar 

  9. 9

    Robidart, J. C. et al. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME J. 8, 1175–1185 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Webb, E. A. et al. Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environ. Microbiol. 11, 338–348 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Mohr, W., Intermaggio, M. P. & LaRoche, J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 12, 412–421 (2010).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Church, M. J. et al. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem. Cycles 23, GB2020 (2009).

    Article  Google Scholar 

  14. 14

    Bench, S. R., Frank, I., Robidart, J. & Zehr, J. P. Two subpopulations of Crocosphaera watsonii have distinct distributions in the North and South Pacific. Environ. Microbiol. 18, 514–524 (2016).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Bench, S. R., Ilikchyan, I. N., Tripp, H. J. & Zehr, J. P. Two strains of Crocosphaera watsonii with highly conserved genomes are distinguished by strain-specific features. Front. Microbiol. 2, 261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Sohm, J. A., Edwards, B. R., Wilson, B. G. & Webb, E. A. Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Front. Microbiol. 2, 229 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Shi, T., Ilikchyan, I., Rabouille, S. & Zehr, J. P. Genome-wide analysis of diel gene expression in the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. ISME J. 4, 621–632 (2010).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Ottesen, E. A. et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ottesen, E. A. et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl Acad. Sci. USA 110, E488–E497 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Stöckel, J. et al. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc. Natl Acad. Sci. USA 105, 6156–6161 (2008).

    Article  PubMed  Google Scholar 

  23. 23

    Welkie, D. et al. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle. BMC Genomics 15, 1185 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Swalwell, J. E., Ribalet, F. & Armbrust, E. V. SeaFlow: a novel underway flow-cytometer for continuous observations of phytoplankton in the ocean. Limnol. Oceanogr. Methods 9, 466–477 (2011).

    Article  Google Scholar 

  25. 25

    Duman, R. et al. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc. Natl Acad. Sci. USA 110, E4601–E4610 (2013).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Goebel, N. L. et al. Growth and carbon content of three different-sized diazotrophic cyanobacteria observed in the subtropical North Pacific. J. Phycol. 44, 1212–1220 (2008).

    Article  PubMed  Google Scholar 

  27. 27

    Nielsen, S. L. Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms. J. Plankton Res. 28, 489–498 (2006).

    Article  Google Scholar 

  28. 28

    Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. & Zehr, J. P. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71, 5362–5370 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microbial Ecol. 37, 85–94 (2004).

    Article  Google Scholar 

  30. 30

    Wilson, S. T. et al. Hydrogen cycling by the unicellular marine diazotroph Crocosphaera watsonii strain WH8501. Appl. Environ. Microbiol. 20, 6797–6803 (2010).

    Article  Google Scholar 

  31. 31

    Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 11, 166–175 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Böttjer, D. et al. Temporal variability in dinitrogen fixation and particulate nitrogen export at Station ALOHA. Limnol. Oceanogr. 62, 200–216 (2017).

    Article  Google Scholar 

  33. 33

    Juranek, L. W. & Quay, P. D. In vitro and in situ gross primary production and net community production in the North Pacific Subtropical Gyre using labeled and natural abundance isotopes of dissolved O2 . Global Biogeochem. Cycles 19, GB3009 (2005).

    Article  Google Scholar 

  34. 34

    Juranek, L. W. et al. Biological production in the NE Pacific and its influence on air–sea CO2 flux: evidence from dissolved oxygen isotopes and O2/Ar. J. Geophys. Res. 117, C05022 (2012).

    Article  Google Scholar 

  35. 35

    Campbell, L. & Vaulot, D. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (Station ALOHA). Deep-Sea Res. I 40, 2043–2060 (1993).

    Article  Google Scholar 

  36. 36

    Rii, Y. M., Karl, D. M. & Church, M. J. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 562, 1–18 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Emerson, S. Annual net community production and the biological carbon flux in the ocean. Global Biogeochem. Cycles 28, 14–28 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Boyd, P. W. et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS ONE 8, e63091 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Fu, F. X. et al. Differing responses of marine N2 fixers to warming and consequences for future diazotroph community structure. Aquat. Microb. Ecol. 72, 33–46 (2014).

    Article  Google Scholar 

  40. 40

    Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O. & Capone, D. G. Nitrogen fixation in the western equatorial Pacific: rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance. Global Biogeochem. Cycles 23, GB3012 (2009).

    Article  Google Scholar 

  41. 41

    Hewson, I. et al. In situ transcriptomic analysis of the globally important keystone N2-fixing taxon Crocosphaera watsonii. ISME J. 3, 618–631 (2009).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Fitzsimmons, J. N. et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171, 303–324 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Wilson, S. T. et al. Short-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA: a case study of summer 2012. Global Biogeochem. Cycles 29, 1145–1164 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Waldbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light–dark synchronized bacterial cell cycle. PLoS ONE 7, e43432 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Moisander, P. H., Beinart, R. A., Voss, M. & Zehr, J. P. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2, 954–967 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Goebel, N. L. et al. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ. Microbiol. 12, 3272–3289 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Wilson, S. T., Böttjer, D., Church, M. J. & Karl, D. M. Comparative assessment of nitrogen fixation methodologies conducted in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 78, 6491–6498 (2012).

    Article  Google Scholar 

  48. 48

    Ferrón, S., Wilson, S. T., Martínez-Garcia, S., Quay, P. D. & Karl, D. M. Metabolic balance in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in O2/Ar saturation ratios. Geophys. Res. Lett. 42, 3421–3430 (2015).

    Article  Google Scholar 

  49. 49

    Landry, M. R., Kirshtein, J. & Constantinou, J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 120, 53–63 (1995).

    Article  Google Scholar 

  50. 50

    Gifford, S. M., Becker, J. W., Sosa, O. A., Repeta, D. J. & DeLong, E. F. Quantitative transcriptomics reveals the growth- and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio 7, e01279–16 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    CAS  Article  Google Scholar 

  54. 54

    Laws, E. A. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res. 38, 143–167 (1991).

    CAS  Article  Google Scholar 

  55. 55

    Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The dataset presented here resulted from the efforts of many scientists who contributed to the success of the 2015 expedition. The authors thank T. Clemente for cruise leadership of KOK1507, J. Collins, J. Ossolinski and B. Van Mooy for net trap samples used for δ15N isotope analysis and E. Boyle for support of the dissolved iron measurements. For assistance with field and laboratory work, the authors thank the operational staff of the Simons Collaboration on Ocean Processes and Ecology (SCOPE), D. Böttjer, P. Den Uyl, L. Jensen, N. Lanning, M. Linney and A. Nelson. This work was supported by grants from the Simons Foundation (no. 329108 to D.M.K. and E.F.D.), the Gordon and Betty Moore Foundation (no. 3777 to E.F.D., no. 3794 to D.M.K., no. 3776 to E.V.A.) and the Balzan Prize for Oceanography (to D.M.K.). In addition, the authors acknowledge the National Science Foundation for support of the HOT programme (OCE1260164 to M.J.C. and D.M.K.) and the Center for Microbial Oceanography: Research and Education (C-MORE; EF0424599 to D.M.K. and E.F.D.). This work is a contribution of SCOPE and C-MORE.

Author information




All authors contributed to the design of the study. S.T.W. and D.M.K. measured nitrogen fixation and provided the water-column hydrography and biogeochemical data. F.O.A., A.E.R., A.V., J.M.E. and E.F.D. sampled, prepared and analysed the metatranscriptomic and metagenomic data. F.R. and E.V.A. conducted the underway enumeration of Crocosphaera abundances. B.B. and F.R. quantified the abundances of larger size Crocosphaera. D.A.C. and P.E.C. performed the microscopy analyses and dilution grazing experiments. S.F. and J.R.C. conducted the productivity measurements. M.J.C. provided the time-series nifH abundances and measured particle export. J.R.C. and B.B. collected and analysed the isotopic composition of sinking particles. K.A.T.-K. and J.P.Z. analysed the nifH abundances. C.T.H. and J.N.F. measured dissolved iron concentrations. S.T.W., F.O.A., D.M.K. and E.F.D. wrote the manuscript with contributions from all coauthors.

Corresponding author

Correspondence to Edward F. DeLong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Table and Figures. (PDF 1827 kb)

Supplementary Dataset 1

Sequencing statistics. (XLS 14 kb)

Supplementary Dataset 2

Annotation information and statistical test results for the genes analysed in this study. (XLSX 701 kb)

Supplementary Dataset 3

Normalization coefficients. (XLSX 11 kb)

Supplementary Dataset 4

Sequence data. (TXT 2136 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, S., Aylward, F., Ribalet, F. et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol 2, 17118 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing