Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

A Corrigendum to this article was published on 03 October 2016


Marine phytoplankton produce 109 tonnes of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemo-organotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell's unusual requirement for reduced sulfur5,6. Here, we report that Pelagibacter HTCC1062 produces the gas methanethiol, and that a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, simultaneously shunts as much as 59% of DMSP uptake to dimethyl sulfide production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of dimethyl sulfide as the supply of DMSP exceeds cellular sulfur demands for biosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: DMSP metabolism in HTCC1062.
Figure 2: Production of gaseous DMSP products as cells accumulate intracellular DMSP.
Figure 3: DMSP catabolic pathways and homologues identified in HTCC1062.


  1. 1

    Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nature Rev. Microbiol. 9, 849–859 (2011).

  2. 2

    Simó, R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287–294 (2001).

    Article  Google Scholar 

  3. 3

    Reisch, C. R., Moran, M. A. & Whitman, W. B. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172 (2011).

    Article  Google Scholar 

  4. 4

    Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000).

    Article  Google Scholar 

  5. 5

    Malmstrom, R. R., Kiene, R. P., Cottrell, M. T. & Kirchman, D. L. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl. Environ. Microbiol. 70, 4129–4135 (2004).

    Article  Google Scholar 

  6. 6

    Vila-Costa, M., Pinhassi, J., Alonso, C., Pernthaler, J. & Simó, R. An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environ. Microbiol. 9, 2451–2463 (2007).

    Article  Google Scholar 

  7. 7

    Reisch, C. R. et al. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473, 208–211 (2011).

    Article  Google Scholar 

  8. 8

    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

  9. 9

    Moran, M. A., Reisch, C. R., Kiene, R. P. & Whitman, W. B. Genomic insights into bacterial DMSP transformations. Annu. Rev. Marine Sci. 4, 523–542 (2012).

    Article  Google Scholar 

  10. 10

    Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    Article  Google Scholar 

  11. 11

    Dunwell, J. M., Purvis, A. & Khuri, S. Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7–17 (2004).

    Article  Google Scholar 

  12. 12

    Curson, A. R. J., Rogers, R., Todd, J. D., Brearley, C. A. & Johnston, A. W. B. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ. Microbiol. 10, 757–767 (2008).

    Article  Google Scholar 

  13. 13

    Todd, J. D. et al. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ. Microbiol. 13, 427–438 (2011).

    Article  Google Scholar 

  14. 14

    Todd, J. D., Kirkwood, M., Newton-Payne, S. & Johnston, A. W. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 6, 223–226 (2012).

    Article  Google Scholar 

  15. 15

    Sun, J. et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS ONE 6, e23973 (2011).

    Article  Google Scholar 

  16. 16

    Carini, P., Steindler, L., Beszteri, S. & Giovannoni, S. J. Nutrient requirements for growth of the SAR11 isolate ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J. 7, 592–602 (2013).

    Article  Google Scholar 

  17. 17

    Kirkwood, M., Le Brun, N. E., Todd, J. D. & Johnston, A. W. B. The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate into acrylate plus dimethyl sulfide. Microbiology 156, 1900–1906 (2010).

    Article  Google Scholar 

  18. 18

    Todd, J. D., Curson, A. R. J., Sullivan, M. J., Kirkwood, M. & Johnston, A. W. B. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS ONE 7, e35947 (2012).

    Article  Google Scholar 

  19. 19

    Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

    Article  Google Scholar 

  20. 20

    Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, 00252-12 (2012).

    Article  Google Scholar 

  21. 21

    Kiene, R. P., Linn, L. J., González, J., Moran, M. A. & Bruton, J. A. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65, 4549–4558 (1999).

    Google Scholar 

  22. 22

    Sowell, S. M. et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3, 93–105 (2009).

    Article  Google Scholar 

  23. 23

    Reisch, C. R., Moran, M. A. & Whitman, W. B. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J. Bacteriol. 190, 8018–8024 (2008).

    Article  Google Scholar 

  24. 24

    Tripp, H. J. et al. Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ. Microbiol. 11, 230–238 (2009).

    Article  Google Scholar 

  25. 25

    Gonzalez, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65, 3810–3819 (1999).

    Google Scholar 

  26. 26

    Gonzalez, J. M. et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. System. Evol. Microbiol. 53, 1261–1269 (2003).

    Article  Google Scholar 

  27. 27

    Burgmann, H. et al. Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP). Environ. Microbiol. 9, 2742–2755 (2007).

    Article  Google Scholar 

  28. 28

    Varaljay, V. A. et al. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME J. 9, 1677–1686 (2015).

    Article  Google Scholar 

  29. 29

    Vallina, S. M. et al. A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox. J. Geophys. Res. 113, G01009 (2008).

    Article  Google Scholar 

  30. 30

    Polimene, L., Archer, S., Butenschön, M. & Allen, J. I. A mechanistic explanation of the Sargasso Sea DMS ‘summer paradox’. Biogeochemistry 110, 243–255 (2012).

    Article  Google Scholar 

  31. 31

    Fang, Y. & Qian, M. C. Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. J. Chromatogr. A 1080, 177–185 (2005).

    Article  Google Scholar 

  32. 32

    Vazquez-Landaverde, P. A., Torres, J. A. & Qian, M. C. Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography-pulsed flame photometric detection. J. Dairy Sci. 89, 2919–2927 (2006).

    Article  Google Scholar 

  33. 33

    Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J. 1, 361–371 (2008).

    Article  Google Scholar 

  34. 34

    Lindinger, W., Hansel, A. & Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Proc. 173, 191–241 (1998).

    Article  Google Scholar 

  35. 35

    Zhao, J. & Zhang, R. Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos. Environ. 38, 2177–2185 (2004).

    Article  Google Scholar 

Download references


The authors thank J.W.H. Dacey for providing DMSP and E. Boss for help with modelling the transport kinetics. The authors thank J.W.H. Dacey and S. Bennett for advice regarding the methods for DMSP measurements and N. Le Brun for suggestions on the properties of the cupin lyases and kinetics analysis. J.S. acknowledges China Scholarships Council (CSC) for financial support. Major support was provided by a grant from the Marine Microbiology Initiative of the Gordon and Betty Moore Foundation (grant no. GBMF607.01 to S.J.G.). Proteomics measurements were supported by the US Department of Energy's (DOE) Office of Biological and Environmental Research (OBER) Pan-omics programme at Pacific Northwest National Laboratory (PNNL) and performed in the Environmental Molecular Sciences Laboratory, a DOE OBER national scientific user facility on the PNNL campus. A.W.B.J. and J.D.T. were supported by grant no. NE/H008586/1 from the UK Natural Environment Research Council and E.K.F. was supported by a studentship from the Tyndall Centre at the University of East Anglia. Funds for the PTR-TOF were provided by NASA (grant no. NNX15AE70G to K.H.H. and S.J.G.) and by a grant to K.H.H. from the Oregon State University Research Office. This research was supported by the US National Science Foundation (grant OCE-1436865).

Author information




J.S. and S.J.G. conceived and designed the experiments. J.S., Y.Q. and M.C.Q. measured DMSP products and intracellular DMSP concentration. J.S. and J.G. performed the physiological growth experiments for HTCC1062. J.S. and J.C.T. analysed and proposed DMSP metabolic pathways. J.D.T., E.K.F. and A.W.B.J. designed and implemented the cloning, expression and characterization of DddK. B.T. performed metagenomics analyses. B.T., J.T.A., C.D.N., M.S.L., R.D.S. and S.H.P. performed iTRAQ and data analyses. P.D.L. and S.J.G. proposed the model. C.L.D.-M. and K.H.H. measured real-time DMS/MeSH production by PTR-TOF/MS. S.J.G. contributed reagents, materials and analysis tools.

Corresponding author

Correspondence to Stephen J. Giovannoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Notes I-V, Supplementary Figures 1-9, Supplementary Tables 1-3, Supplementary Table 4 Legend, Supplementary Methods and Supplementary References (PDF 1476 kb)

Supplementary Table 4

(XLS 67 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Todd, J., Thrash, J. et al. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol 1, 16065 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing