Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Polyploidy and community structure

Many species of Archaea, Bacteria and eukaryotes are polyploid in natural populations. The mixture of species with unknown but widely varying ploidy levels compromises marker-gene-based analyses of community structures, population dynamics and microbiomes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of marker gene frequencies and real community composition.

References

  1. de la Cuesta-Zuluaga, J. & Escobar, J. S. Front Nutr. 3, 26 (2016).

    Article  Google Scholar 

  2. Balint, M. et al. FEMS Microbiol. Rev. 40, 686–700 (2016).

    Article  CAS  Google Scholar 

  3. Brooks, J. P. et al. BMC Microbiol. 15, 66 (2015).

    Article  Google Scholar 

  4. Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. PLoS Comput. Biol. 8, e1002743 (2012).

    Article  CAS  Google Scholar 

  5. Hansen, M. T. J. Bacteriol. 134, 71–75 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pecoraro, V., Zerulla, K., Lange, C. & Soppa, J. PLoS ONE 6, e16392 (2011).

    Article  CAS  Google Scholar 

  7. Griese, M., Lange, C. & Soppa, J. FEMS Microbiol. Lett. 323, 124–131 (2011).

    Article  CAS  Google Scholar 

  8. Soppa, J. J. Mol. Microbiol. Biotechnol. 24, 409–419 (2014).

    Article  CAS  Google Scholar 

  9. Zerulla, K. & Soppa, J. Front Microbiol. 5, 274 (2014).

    Article  Google Scholar 

  10. Jaakkola, S. T. et al. PLoS ONE 9, e110533 (2014).

    Article  Google Scholar 

  11. Angert, E. R. Annu. Rev. Microbiol. 66, 197–212 (2012).

    Article  CAS  Google Scholar 

  12. Mendell, J. E., Clements, K. D., Choat, J. H. & Angert, E. R. Proc. Natl Acad. Sci. USA 105, 6730–6734 (2008).

    Article  CAS  Google Scholar 

  13. Zimmermann, J. et al. Eur. J. Immunol. 46, 1300–1303 (2016).

  14. Edgar, B. A., Zielke, N. & Guitierrez, C. Nat. Rev. Mol. Cell Biol. 15, 197–210 (2014).

    Article  Google Scholar 

  15. Maldonado, R., Jimenez, J. & Casadesus, J. J. Bacteriol. 176, 3911–3919 (1994).

    Article  CAS  Google Scholar 

  16. Zerulla, K., Ludt, K. & Soppa, J. Microbiology 162, 730–739 (2016).

    Article  CAS  Google Scholar 

  17. Zerulla, K. et al. PLoS ONE 9, e94819 (2014).

    Article  Google Scholar 

  18. Neidhardt, F. C. (ed.) in Escherichia coli and Salmonella 1553–1569 (ASM, 1996).

    Google Scholar 

Download references

Acknowledgements

The work on ploidy in prokaryotes in my group was funded by the German Research Council (Deutsche Forschungsgemeinschaft) through grants SO264/16 and SO264/24. I thank C. Schleper (University of Vienna, Austria) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Soppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soppa, J. Polyploidy and community structure. Nat Microbiol 2, 16261 (2017). https://doi.org/10.1038/nmicrobiol.2016.261

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.261

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology