Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system


An important function of the blood–brain barrier is to exclude pathogens from the central nervous system, but some microorganisms benefit from the ability to enter this site. It has been proposed that Toxoplasma gondii can cross biological barriers as a motile extracellular form that uses transcellular or paracellular migration, or by infecting a host cell that then crosses the blood–brain barrier. Unexpectedly, analysis of acutely infected mice revealed significant numbers of free parasites in the blood and the presence of infected endothelial cells in the brain vasculature. The use of diverse transgenic parasites combined with reporter mice and intravital imaging demonstrated that replication in and lysis of endothelial cells precedes invasion of the central nervous system, and highlight a novel mechanism for parasite entry to the central nervous system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: T. gondii infection of the vascular compartment.
Figure 2: Detection of free T. gondii tachyzoites in the vascular compartment.
Figure 3: T. gondii tachyzoites invade ECs in vivo and in vitro.
Figure 4: T. gondii egress from ECs in vivo.
Figure 5: Replication of T. gondii in ECs is required for parasites to cross the BBB.


  1. Montoya, J. G. & Liesenfeld, O. Toxoplasmosis. Lancet 363, 1965–1976 (2004).

    Article  Google Scholar 

  2. Kristensson, K. Microbes’ roadmap to neurons. Nature Rev. Neurosci. 12, 345–357 (2011).

    Article  Google Scholar 

  3. Kim, K. S. Mechanisms of microbial traversal of the blood–brain barrier. Nature Rev. Microbiol. 6, 625–634 (2008).

    Article  Google Scholar 

  4. Lambert, H. & Barragan, A. Modelling parasite dissemination: host cell subversion and immune evasion by Toxoplasma gondii. Cell. Microbiol. 12, 292–300 (2010).

    Article  Google Scholar 

  5. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    Article  Google Scholar 

  6. Courret, N. et al. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107, 309–316 (2006).

    Article  Google Scholar 

  7. Coureuil, M. et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325, 83–87 (2009).

    Article  Google Scholar 

  8. Barragan, A. Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J. Exp. Med. 195, 1625–1633 (2002).

    Article  Google Scholar 

  9. Ring, A., Weiser, J. N. & Tuomanen, E. I. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 102, 347–360 (1998).

    Article  Google Scholar 

  10. Shi, M. et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J. Clin. Invest. 120, 1683–1693 (2010).

    Article  Google Scholar 

  11. Coombes, J. L. et al. Motile invaded neutrophils in the small intestine of Toxoplasma gondii-infected mice reveal a potential mechanism for parasite spread. Proc. Natl Acad. Sci. USA 110, E1913–E1922 (2013).

    Article  Google Scholar 

  12. Chtanova, T. et al. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 31, 342–355 (2009).

    Article  Google Scholar 

  13. Drevets, D. A. et al. The Ly-6Chigh monocyte subpopulation transports listeria monocytogenes into the brain during systemic infection of mice. J. Immunol. 172, 4418–4424 (2004).

    Article  Google Scholar 

  14. Coombes, J. L. & Robey, E. A. Dynamic imaging of host–pathogen interactions in vivo. Nature Rev. Immunol. 10, 353–364 (2010).

    Article  Google Scholar 

  15. McGavern, D. B. & Kang, S. S. Illuminating viral infections in the nervous system. Nature Rev. Immunol. 11, 318–329 (2011).

    Article  Google Scholar 

  16. Harris, T. H. et al. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012).

    Article  Google Scholar 

  17. Xu, H.-T., Pan, F., Yang, G. & Gan, W.-B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neurosci. 10, 549–551 (2007).

    Article  Google Scholar 

  18. Garlanda, C. & Dejana, E. Heterogeneity of endothelial cells: specific markers. Arterioscler. Thromb. Vasc. Biol. 17, 1193–1202 (1997).

    Article  Google Scholar 

  19. Williams, R. W. Mapping genes that modulate mouse brain development: a quantitative genetic approach. Results Probl. Cell Differ. 30, 21–49 (2000).

    Article  Google Scholar 

  20. Fox, B. A. & Bzik, D. J. De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature 415, 926–929 (2002).

    Article  Google Scholar 

  21. Dupont, C. D. et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to toxoplasma gondii. PLoS Pathog. 10, e1004047 (2014).

    Article  Google Scholar 

  22. Lambert, H., Vutova, P. P., Adams, W. C., Lore, K. & Barragan, A. The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect. Immun. 77, 1679–1688 (2009).

    Article  Google Scholar 

  23. Glatman Zaretsky, A. et al. Infection with Toxoplasma gondii alters lymphotoxin expression associated with changes in splenic architecture. Infect. Immun. 80, 3602–3610 (2012).

    Article  Google Scholar 

  24. Papaioannou, T. G. & Stefanadis, C. Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46, 9–15 (2005).

    Google Scholar 

  25. Bernard, S. C. et al. Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nature Med. 20, 725–731 (2014).

    Article  Google Scholar 

  26. Lefort, C. T. et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119, 4275–4282 (2012).

    Article  Google Scholar 

  27. Mairey, E. et al. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. J. Exp. Med. 203, 1939–1950 (2006).

    Article  Google Scholar 

  28. Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nature Immunol. 11, 295–302 (2010).

    Article  Google Scholar 

  29. Lee, W. Y. et al. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia. Proc. Natl Acad. Sci. USA 111, 13936–13941 (2014).

    Article  Google Scholar 

  30. Liu, T.-B. et al. Brain inositol is a novel stimulator for promoting cryptococcus penetration of the blood–brain barrier. PLoS Pathog. 9, e1003247 (2013).

    Article  Google Scholar 

  31. Matsuda, K. et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J. Virol. 88, 13201–13211 (2014).

    Article  Google Scholar 

  32. Koshy, A. A. et al. Toxoplasma co-opts host cells it does not invade. PLoS Pathog. 8, e1002825 (2012).

    Article  Google Scholar 

  33. Ma, J. S. et al. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J. Exp. Med. 211, 2013–2032 (2014).

    Article  Google Scholar 

  34. Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M. & Barragan, A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell. Microbiol. 8, 1611–1623 (2006).

    Article  Google Scholar 

  35. Germain, R. N., Robey, E. A. & Cahalan, M. D. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676–1681 (2012).

    Article  Google Scholar 

  36. Maisner, A., Neufeld, J. & Weingartl, H. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb. Haemost. 102, 1014–1023 (2009).

    Article  Google Scholar 

  37. Su, C. Recent expansion of toxoplasma through enhanced oral transmission. Science 299, 414–416 (2003).

    Article  Google Scholar 

  38. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

    Article  Google Scholar 

  39. Wille, U. et al. IL-10 is not required to prevent immune hyperactivity during memory responses to Toxoplasma gondii. Parasite Immunol. 26, 229–236 (2004).

    Article  Google Scholar 

  40. Koshy, A. A. et al. Toxoplasma secreting Cre recombinase for analysis of host–parasite interactions. Nature Methods 7, 307–309 (2010).

    Article  CAS  Google Scholar 

  41. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W.-B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protoc. 5, 201–208 (2010).

    Article  Google Scholar 

  42. Harker, K. S., Jivan, E., McWhorter, F. Y., Liu, W. F. & Lodoen, M. B. Shear forces enhance Toxoplasma gondii tachyzoite motility on vascular endothelium. mBio 5, e01111 (2014).

    Article  Google Scholar 

  43. Harker, K. S. et al. Toxoplasma gondii modulates the dynamics of human monocyte adhesion to vascular endothelium under fluidic shear stress. J. Leukocyte Biol. 93, 789–800 (2013).

    Article  Google Scholar 

  44. Dunn, J. D., Ravindran, S., Kim, S. K. & Boothroyd, J. C. The Toxoplasma gondii dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the rhoptry proteins ROP2 and ROP4. Infect. Immun. 76, 5853–5861 (2008).

    Article  Google Scholar 

Download references


C.K. was supported by research grant KO 4609-1/1 from the German Research Foundation (DFG). This work was supported by grants from the National Institutes of Health (NIH AI 41158 to C.A.H., NIH NS065116 to A.A.K., NIH AI041930 to D.J.B.), the American Heart Association (14BGIA20380675 to M.B.L. and 15POST25550021 to N.U.) and the University of Arizona and the BIO5 Institute (A.A.K.). Imaging experiments were performed in the PennVet Imaging Core Facility on instrumentation supported by NIH S10RR027128, the School of Veterinary Medicine, the University of Pennsylvania, and the Commonwealth of Pennsylvania. sIgM-ko mice were provided by G. Debes (University of Pennsylvania). C.A.H is the Mindy Halikman Heyer President's Distinguished Chair.

Author information

Authors and Affiliations



C.K. performed the majority of the experiments. N.U. and M.B.L. performed and analysed the microfluidic chamber experiments. J.D. and G.H.P. helped with sample collection. D.J.B. provided the CPS parasites. A.A.K. provided Cre-secreting parasites. D.A.C., J.H. and D.B.M were involved in study design. C.K. and C.A.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Christopher A. Hunter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-6 (PDF 4603 kb)

Supplementary Video 1

Intravital imaging of circulation kinetics of T. gondii after i.v. infection. (MOV 2595 kb)

Supplementary Video 2

Intravital imaging of the lysis of an infected Tie2-GFP+ endothelial cell in a large blood vessel in the brain. (MOV 3398 kb)

Supplementary Video 3

Intravital imaging of the lysis of an infected Tie2-GFP+ endothelial cell in a capillary in the brain and parasite entry into the parenchyma. (MOV 4775 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konradt, C., Ueno, N., Christian, D. et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol 1, 16001 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing