Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid identification of functionally critical amino acids in a G protein–coupled receptor

Abstract

G protein–coupled receptors (GPCRs) comprise one of the largest protein families found in nature. Here we describe a new experimental strategy that allows rapid identification of functionally critical amino acids in the rat M3 muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR. This approach involves low-frequency random mutagenesis of the entire M3R coding sequence, followed by the application of a new yeast genetic screen that allows the recovery of inactivating M3R single point mutations. The vast majority of recovered mutant M3Rs also showed substantial functional impairments in transfected mammalian (COS-7) cells. A subset of mutant receptors, however, behaved differently in yeast and mammalian cells, probably because of the specific features of the yeast expression system used. The screening strategy described here should be applicable to all GPCRs that can be expressed functionally in yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the selection strategy used to identify point mutations that abolish M3R function in yeast.
Figure 2: Characterization of M3R expression and signaling in yeast.
Figure 3: Summary of point mutations that abolish or greatly impair M3R function in mammalian (COS-7) cells.
Figure 4: Predicted location of functionally important TM I and II residues in the three-dimensional structure of the M3R.

Similar content being viewed by others

References

  1. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 103, 21–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Foord, S.M. et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Wess, J. Molecular biology of muscarinic acetylcholine receptors. Crit. Rev. Neurobiol. 10, 69–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Wess, J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Pausch, M.H. G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends Biotechnol. 15, 487–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dowell, S.J. & Brown, A.J. Yeast assays for G-protein-coupled receptors. Recept. Chann. 8, 343–352 (2002).

    Article  CAS  Google Scholar 

  8. Beukers, M.W. & Ijzerman, A.P. Techniques: how to boost GPCR mutagenesis studies using yeast. Trends Pharmacol. Sci. 26, 533–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Stefan, C.J. & Blumer, K.J. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol. Cell. Biol. 14, 3339–3349 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Konopka, J.B., Margarit, S.M. & Dube, P. Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled α-factor receptor. Proc. Natl. Acad. Sci. USA 93, 6764–6769 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sommers, C.M. & Dumont, M.E. Genetic interactions among the transmembrane segments of the G protein coupled receptor encoded by the yeast STE2 gene. J. Mol. Biol. 266, 559–575 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Baranski, T.J. et al. C5a receptor activation. Genetic identification of critical residues in four transmembrane helices. J. Biol. Chem. 274, 15757–15765 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Erlenbach, I. et al. Single amino acid substitutions and deletions that alter the G protein coupling properties of the V2 vasopressin receptor identified in yeast by receptor random mutagenesis. J. Biol. Chem. 276, 29382–29392 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, C. et al. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that “silence” a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J. Biol. Chem. 278, 30248–30260 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Li, B. et al. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J. Biol. Chem. 280, 5664–5675 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Erlenbach, I. et al. Functional expression of M1, M3 and M5 muscarinic acetylcholine receptors in yeast. J. Neurochem. 77, 1327–1337 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Schöneberg, T., Liu, J. & Wess, J. Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J. Biol. Chem. 270, 18000–18006 (1995).

    Article  PubMed  Google Scholar 

  18. Zeng, F.-Y., Soldner, A., Schöneberg, T. & Wess, J. Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. J. Neurochem. 72, 2404–2414 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Hampsey, M. A review of phenotypes in Saccharomyces cerevisiae. Yeast 13, 1099–1133 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Cadwell, R.C. & Joyce, G.F. Mutagenic PCR. PCR Methods Appl. 3, S136–S140 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, Z.L., Saldanha, J.W. & Hulme, E.C. Seven-transmembrane receptors: crystals clarify. Trends Pharmacol. Sci. 23, 140–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Hulme, E.C., Lu, Z.L. & Bee, M.S. Scanning mutagenesis studies of the M1 muscarinic acetylcholine receptor. Recept. Chann. 9, 215–228 (2003).

    Article  CAS  Google Scholar 

  25. Ballesteros, J.A. & Weinstein, H. Integrated methods for modeling G-protein coupled receptors. Meth. Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  26. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein–coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Han, S.J. et al. Pronounced conformational changes following agonist activation of the M3 muscarinic acetylcholine receptor. J. Biol. Chem. 280, 24870–24879 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Behrendt, H.J., Germann, T., Gillen, C., Hatt, H. & Jostock, R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br. J. Pharmacol. 141, 737–745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Y. & Prusoff, W.H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Bo Li who died on October 20, 2006, in a tragic traffic accident. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Disorders (NIDDK). We thank Dr. P. William (NIH-NIDDK) for his help with the microscopic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

A C-terminal EGFP tag has no significant effect on the ligand binding and functional properties of the full-length rat M3R transiently expressed in COS-7 cells.

Supplementary Table 2

Use of error-prone PCR to generate yeast libraries expressing randomly mutagenized mutant M3Rs.

Supplementary Table 3

Complexity of the yeast libraries expressing randomly mutagenized mutant M3Rs generated via error-prone PCR.

Supplementary Table 4

Characterization of mutant M3Rs recovered in the yeast genetic screen in transfected COS-7 cells.

Supplementary Note 1

Functional activity in yeast of mutant M3Rs containing amino acid substitutions at position Leu225.

Supplementary Note 2

Mutant M3Rs displaying reduced Bmax values and cell surface expression.

Supplementary Note 3

Predicted location and interactions of functionally important TM I and II residues in the 3D structure of the M3R.

Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Scarselli, M., Knudsen, C. et al. Rapid identification of functionally critical amino acids in a G protein–coupled receptor. Nat Methods 4, 169–174 (2007). https://doi.org/10.1038/nmeth990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing