Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic biotinylation of cell surface receptors for in vivo imaging

A Corrigendum to this article was published on 01 August 2006

This article has been updated

Abstract

We have developed a versatile, potent technique for imaging cells in culture and in vivo by expressing a metabolically biotinylated cell-surface receptor and visualizing it with labeled streptavidin moieties. The recombinant reporter protein, which incorporates a biotin acceptor peptide (BAP) between an N-terminal signal sequence and a transmembrane domain, (BAP-TM) was efficiently biotinylated by endogenous biotin ligase in mammalian cells with the biotin displayed on the cell surface. Tumors expressing the BAP-TM have high sensitivity for magnetic resonance and fluorescence tomographic imaging in vivo after intravascular injection of streptavidin conjugated to magnetic nanoparticles or fluorochromes, respectively. Moreover, streptavidin–horseradish peroxidase conjugates in conjunction with a peroxidase-sensitive gadolinium agent further increased and prolonged the magnetic resonance signal. This BAP-TM allows noninvasive real-time imaging of any cell type transduced to express this reporter protein in culture or in vivo.

*Note: In the version of this article originally published, reference 12 was incorrect. The correct reference 12 is Querol, M., Chen, J.W., Weissleder, R. & Bogdanov, A. Jr. DTPA-bis-amide based MR sensor agents for peroxidase imaging. Org. Lett. 17, 1719–1722 (2005). This error has been corrected in the PDF version of the article.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme for metabolic biotinylation of surface reporters and imaging of mammalian cells.
Figure 2: Biotinylation of recombinant BAP-TM protein in mammalian cells.
Figure 3: T2-weighted magnetic resonance imaging of tumor cells expressing either biotinylated surface reporter or transferrin receptor reporter in culture and in vivo.
Figure 4: In vivo fluorescence quantitation of tumors expressing metabolically biotinylated mammalian surface receptors.
Figure 5: Magnetic resonance imaging of tumors expressing BAP-TM reporter using a paramagnetic agent that rapidly polymerizes in the presence of peroxidase.

Change history

  • 10 July 2006

    change to reference

References

  1. Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).

    CAS  PubMed  Google Scholar 

  2. Tsien, R.Y. Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927–932 (2005).

    Article  CAS  Google Scholar 

  3. Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).

    Article  Google Scholar 

  4. Tannous, B.A., Kim, D.E., Fernandez, J.L., Weissleder, R. & Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 11, 435–443 (2005).

    Article  CAS  Google Scholar 

  5. Tjuvajev, J.G. et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072–1083 (2002).

    PubMed  Google Scholar 

  6. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).

    Article  CAS  Google Scholar 

  7. Che, J. et al. hNIS-IRES-eGFP dual reporter gene imaging. Mol. Imaging 4, 128–136 (2005).

    Article  Google Scholar 

  8. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  Google Scholar 

  9. Chapman-Smith, A. & Cronan, J.E., Jr. In vivo enzymatic protein biotinylation. Biomol. Eng. 16, 119–125 (1999).

    Article  CAS  Google Scholar 

  10. Parrott, M.B. & Barry, M.A. Metabolic biotinylation of recombinant proteins in mammalian cells and in mice. Mol. Ther. 1, 96–104 (2000).

    Article  CAS  Google Scholar 

  11. Diamandis, E.P. & Christopoulos, T.K. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin. Chem. 37, 625–636 (1991).

    CAS  PubMed  Google Scholar 

  12. Chen, J.W., Pham, W., Weissleder, R. & Bogdanov, A., Jr. Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn. Reson. Med. 52, 1021–1028 (2004).

    Article  CAS  Google Scholar 

  13. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Meth. 2, 99–104 (2005).

    Article  CAS  Google Scholar 

  14. Tannous, B.A., Laios, E. & Christopoulos, T.K. T7 RNA polymerase as a self-replicating label for antigen quantification. Nucleic Acids Res. 30, e140 (2002).

    Article  Google Scholar 

  15. Tannous, B.A., Verhaegen, M., Christopoulos, T.K. & Kourakli, A. Combined flash- and glow-type chemiluminescent reactions for high-throughput genotyping of biallelic polymorphisms. Anal. Biochem. 320, 266–272 (2003).

    Article  CAS  Google Scholar 

  16. Sakahara, H. & Saga, T. Avidin-biotin system for delivery of diagnostic agents. Adv. Drug Deliv. Rev. 37, 89–101 (1999).

    Article  CAS  Google Scholar 

  17. Moore, A., Grimm, J., Han, B. & Santamaria, P. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  18. Axworthy, D.B. et al. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc. Natl. Acad. Sci. USA 97, 1802–1807 (2000).

    Article  CAS  Google Scholar 

  19. Kirkeby, S., Moe, D., Bog-Hansen, T.C. & van Noorden, C.J. Biotin carboxylases in mitochondria and the cytosol from skeletal and cardiac muscle as detected by avidin binding. Histochemistry 100, 415–421 (1993).

    Article  CAS  Google Scholar 

  20. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  21. McCann, C.M., Bareyre, F.M., Lichtman, J.W. & Sanes, J.R. Peptide tags for labeling membrane proteins in live cells with multiple fluorophores. Biotechniques 38, 945–952 (2005).

    Article  CAS  Google Scholar 

  22. Sena-Esteves, M., Tebbets, J.C., Steffens, S., Crombleholme, T. & Flake, A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122, 131–139 (2004).

    Article  CAS  Google Scholar 

  23. Hewett, J. et al. Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum. Mol. Genet. 9, 1403–1413 (2000).

    Article  CAS  Google Scholar 

  24. Perez, J.M., Josephson, L., O'Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

  25. Rusckowski, M., Fogarasi, M., Fritz, B. & Hnatowich, D.J. Effect of endogenous biotin on the applications of streptavidin and biotin in mice. Nucl. Med. Biol. 24, 263–268 (1997).

    Article  CAS  Google Scholar 

  26. Rosset, A., Spadola, L. & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205–216 (2004).

    Article  Google Scholar 

  27. Montet, X., Ntziachristos, V., Grimm, J. & Weissleder, R. Tomographic fluorescence mapping of tumor targets. Cancer Res. 65, 6330–6336 (2005).

    Article  CAS  Google Scholar 

  28. Ntziachristos, V., Tung, C.H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).

    Article  CAS  Google Scholar 

  29. Grimm, J. et al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl. Acad. Sci. USA 102, 14404–14409 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Cancer Institute CA69246 (X.O.B. and R.W.), CA86355 (R.W. and X.O.B.), CA92782 (R.W.), U01 HL080731 (R.W.), R01 HL078641 (R.W.) and the Brain Tumor Society (X.O.B. and B.A.T.). We thank M. Sena-Esteves (MGH) for providing the lentivirus vectors, P. Waterman for FMT analysis, S. Rhee for magnetic resonance image acquisitions, M. Pittet for help with FACS analysis, N. Sergeyev for synthesizing MNP and F. Reynolds for synthesizing the Gd agent. We also thank S. McDavitt and M. Carlson for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tannous, B., Grimm, J., Perry, K. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3, 391–396 (2006). https://doi.org/10.1038/nmeth875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing