Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging

Abstract

Methods to record action potential (AP) firing in many individual neurons are essential to unravel the function of complex neuronal circuits in the brain. A promising approach is bolus loading of Ca2+ indicators combined with multiphoton microscopy. Currently, however, this technique lacks cell-type specificity, has low temporal resolution and cannot resolve complex temporal firing patterns. Here we present simple solutions to these problems. We identified neuron types by colocalizing Ca2+ signals of a red-fluorescing indicator with genetically encoded markers. We reconstructed firing rate changes from Ca2+ signals by temporal deconvolution. This technique is efficient, dramatically enhances temporal resolution, facilitates data interpretation and permits analysis of odor-response patterns across thousands of neurons in the zebrafish olfactory bulb. Hence, temporally deconvolved Ca2+ imaging (TDCa imaging) resolves limitations of current optical recording techniques and is likely to be widely applicable because of its simplicity, robustness and generic principle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two-photon imaging of neuronal calcium signals in the zebrafish olfactory bulb.
Figure 2: Relationship between APs and Ca2+ signals.
Figure 3: Temporal deconvolution of two-photon Ca2+ signals.
Figure 4: Quantitative analysis of TDCa imaging.
Figure 5: Analysis of odor-evoked activity patterns in the zebrafish olfactory bulb.

References

  1. 1

    Grinvald, A., Frostig, R.D., Lieke, E. & Hildesheim, R. Optical imaging of neuronal activity. Physiol. Rev. 68, 1285–1366 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Zochowski, M. et al. Imaging membrane potential with voltage-sensitive dyes. Biol. Bull. 198, 1–21 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Logothetis, N.K. & Pfeuffer, J. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517–1531 (2004).

    Article  Google Scholar 

  4. 4

    Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat Methods 2, 932–940 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Brustein, E., Marandi, N., Kovalchuk, Y., Drapeau, P. & Konnerth, A. “In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging. Pflugers Arch. 446, 766–773 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Li, J. et al. Early development of functional spatial maps in the zebrafish olfactory bulb. J. Neurosci. 25, 5784–5795 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Sullivan, M.R., Nimmerjahn, A., Sarkisov, D.V., Helmchen, F. & Wang, S.S. In vivo calcium imaging of circuit activity in cerebellar cortex. J. Neurophysiol. 94, 1636–1644 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl Acad. Sci. USA 102, 14063–14068 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Shipley, M.T. & Ennis, M. Functional organization of olfactory system. J. Neurobiol. 30, 123–176 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Zerucha, T. et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J. Neurosci. 20, 709–721 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Higashijima, S., Masino, M.A., Mandel, G. & Fetcho, J.R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003).

    Article  Google Scholar 

  17. 17

    Friedrich, R.W. & Laurent, G. Dynamic optimization of odor representations in the olfactory bulb by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Friedrich, R.W. & Korsching, S.I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737–752 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Friedrich, R.W. & Laurent, G. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. J. Neurophysiol. 91, 2658–2669 (2004).

    Article  Google Scholar 

  21. 21

    Friedrich, R.W., Habermann, C.J. & Laurent, G. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7, 862–871 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Miesenbock, G. & Kevrekidis, I.G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  23. 23

    MacLean, J.N., Watson, B.O., Aaron, G.B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Kay, L.M. & Laurent, G. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2, 1003–1009 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Chafee, M.V. & Goldman-Rakic, P.S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Wilson, R.I., Turner, G.C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Sachse, S. & Galizia, C.G. The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur. J. Neurosci. 18, 2119–2132 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Denk, T. Euler, J. Kerr, G. Laurent, H. Riecke, P.H. Seeburg and members of the Friedrich laboratory for support, helpful discussions, and/or comments on the manuscript. This work was supported by the Max Planck-Society, the Deutsche Forschungsgemeinschaft (DFG; SFB 488), and a fellowship from the Boehringer Ingelheim Fonds to E.Y.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer W Friedrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Principle of firing rate reconstruction by temporal deconvolution. (PDF 145 kb)

Supplementary Fig. 2

Decay time constants and their influence on deconvolution. (PDF 273 kb)

Supplementary Fig. 3

Iterative smooting procedure. (PDF 111 kb)

Supplementary Fig. 4

Deconvolution parameter search results. (PDF 83 kb)

Supplementary Fig. 5

Comparison of temporal deconvolution to other methods. (PDF 156 kb)

Supplementary Methods (PDF 121 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yaksi, E., Friedrich, R. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3, 377–383 (2006). https://doi.org/10.1038/nmeth874

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing