Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells

Abstract

Interactions between proteins are at the heart of the cellular machinery. It is therefore not surprising that altered interaction profiles caused by aberrant protein expression patterns or by the presence of mutations can trigger cellular dysfunction, eventually leading to disease. Moreover, many viral and bacterial pathogens rely on protein-protein interactions to exert their damaging effects. Interfering with such interactions is an obvious pharmaceutical goal, but detailed insights into the protein binding properties as well as efficient screening platforms are needed. In this report, we describe a cytokine receptor–based assay with a positive readout to screen for disrupters of designated protein-protein interactions in intact mammalian cells and evaluate this concept using polypeptides as well as small organic molecules. These reverse mammalian protein-protein interaction trap (MAPPIT) screens were developed to monitor interactions between the erythropoietin receptor (EpoR) and suppressors of cytokine signaling (SOCS) proteins, between FKBP12 and ALK4, and between MDM2 and p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the forward MAPPIT and reverse MAPPIT principles.
Figure 2: Inhibition of signaling via a chimeric SOCS3-CIS construct is lost upon coexpression of a competitor SOCS protein.
Figure 3: Analysis of the interaction between FKBP12 and ALK4.
Figure 4: Structure-function analysis using ReverseMAPPIT.
Figure 5: Dose-dependent disruption of the p53-MDM2 interaction by Nutlin-3 as evaluated by reverse MAPPIT.

Similar content being viewed by others

References

  1. Zhang, Z.Y., Poorman, R.A., Maggiora, L.L., Heinrikson, R.L. & Kezdy, F.J. Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J. Biol. Chem. 266, 15591–15594 (1991).

    CAS  PubMed  Google Scholar 

  2. Moss, N. et al. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase with improved in vivo antiviral activity. J. Med. Chem. 39, 4173–4180 (1996).

    Article  CAS  Google Scholar 

  3. Adachi, T., Stafford, S., Sur, S. & Alam, R. A novel Lyn-binding peptide inhibitor blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. J. Immunol. 163, 939–946 (1999).

    CAS  PubMed  Google Scholar 

  4. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL . Nat. Cell Biol. 3, 173–182 (2001).

    Article  CAS  Google Scholar 

  5. Hayashi, M. et al. Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA 99, 14728–14733 (2002).

    Article  CAS  Google Scholar 

  6. Hayashi, M. et al. Biological activity of a novel nonpeptide antagonist to the interleukin-6 receptor 20S,21-epoxy-resibufogenin-3-formate. J. Pharmacol. Exp. Ther. 303, 104–109 (2002).

    Article  CAS  Google Scholar 

  7. Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med. 7, 687–692 (2001).

    Article  CAS  Google Scholar 

  8. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  9. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5, 91–102 (2004).

    Article  CAS  Google Scholar 

  10. Gadek, T.R. & Nicholas, J.B. Small molecule antagonists of proteins. Biochem. Pharmacol. 65, 1–8 (2003).

    Article  CAS  Google Scholar 

  11. Bergendahl, V., Heyduk, T. & Burgess, R.R. Luminescence resonance energy transfer-based high-throughput screening assay for inhibitors of essential protein-protein interactions in bacterial RNA polymerase. Appl. Environ. Microbiol. 69, 1492–1498 (2003).

    Article  CAS  Google Scholar 

  12. Zhao, H.F. et al. A mammalian genetic system to screen for small molecules capable of disrupting protein-protein interactions. Anal. Chem. 76, 2922–2927 (2004).

    Article  CAS  Google Scholar 

  13. Kato-Stankiewicz, J. et al. Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc. Natl. Acad. Sci. USA 99, 14398–14403 (2002).

    Article  CAS  Google Scholar 

  14. Huang, J. & Schreiber, S.L. A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc. Natl. Acad. Sci. USA 94, 13396–13401 (1997).

    Article  CAS  Google Scholar 

  15. Vidal, M., Braun, P., Chen, E., Boeke, J.D. & Harlow, E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. Acad. Sci. USA 93, 10321–10326 (1996).

    Article  CAS  Google Scholar 

  16. Park, S.H. & Raines, R.T. Genetic selection for dissociative inhibitors of designated protein-protein interactions. Nat. Biotechnol. 18, 847–851 (2000).

    Article  CAS  Google Scholar 

  17. Eyckerman, S. et al. Design and application of a cytokine receptor–based interaction trap. Nat. Cell Biol. 3, 1114–1119 (2001).

    Article  CAS  Google Scholar 

  18. Krebs, D.L. & Hilton, D.J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378–387 (2001).

    Article  CAS  Google Scholar 

  19. Yoshimura, A. et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 14, 2816–2826 (1995).

    Article  CAS  Google Scholar 

  20. Baumann, H. et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. USA 93, 8374–8378 (1996).

    Article  CAS  Google Scholar 

  21. Eyckerman, S., Broekaert, D., Verhee, A., Vandekerckhove, J. & Tavernier, J. Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett. 486, 33–37 (2000).

    Article  CAS  Google Scholar 

  22. Zhang, J.G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076 (1999).

    Article  CAS  Google Scholar 

  23. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  Google Scholar 

  24. Huse, M., Chen, Y.G., Massague, J. & Kuriyan, J. Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell 96, 425–436 (1999).

    Article  CAS  Google Scholar 

  25. Wang, T., Donahoe, P.K. & Zervos, A.S. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265, 674–676 (1994).

    Article  CAS  Google Scholar 

  26. Cook, W.S. & Unger, R.H. Protein tyrosine phosphatase 1B: a potential leptin resistance factor of obesity. Dev. Cell 2, 385–387 (2002).

    Article  CAS  Google Scholar 

  27. ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22, 5662–5668 (2002).

    Article  CAS  Google Scholar 

  28. Chung, C.D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803–1805 (1997).

    Article  CAS  Google Scholar 

  29. Chen, Y.G., Liu, F. & Massague, J. Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J. 16, 3866–3876 (1997).

    Article  CAS  Google Scholar 

  30. Charng, M.J., Kinnunen, P., Hawker, J., Brand, T. & Schneider, M.D. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor-βreceptors. J. Biol. Chem. 271, 22941–22944 (1996).

    Article  CAS  Google Scholar 

  31. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  Google Scholar 

  32. Archakov, A.I. et al. Protein-protein interactions as a target for drugs in proteomics. Proteomics 3, 380–391 (2003).

    Article  CAS  Google Scholar 

  33. Arkin, M.R. et al. Binding of small molecules to an adaptive protein-protein interface. Proc. Natl. Acad. Sci. USA 100, 1603–1608 (2003).

    Article  CAS  Google Scholar 

  34. Vidal, M. & Endoh, H. Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17, 374–381 (1999).

    Article  CAS  Google Scholar 

  35. Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M. & Bard, M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell. Biol. 9, 3447–3456 (1989).

    Article  CAS  Google Scholar 

  36. Eyckerman, S. et al. Analysis of Tyr to Phe and fa/fa leptin receptor mutations in the PC12 cell line. Eur. Cytokine Netw. 10, 549–556 (1999).

    CAS  PubMed  Google Scholar 

  37. Lemmens, I. et al. Heteromeric MAPPIT: a novel strategy to study modification-dependent protein-protein interactions in mammalian cells. Nucleic Acids Res. 31, e75 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge R. Devos for the pGEX-PTP-1B vector; K. Kas for critical reading of the manuscript, M. Goethals for peptide synthesis and D. Defeau for technical assistance. This project was supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen; GBOU 010090), Ghent University (UGent; GOA 12051401) and the valorisation fund of the Flanders Interuniversity Institute for Biotechnology (VIB). S.E. is a Postdoctoral Fellow of the Fund for Scientific Research-Flanders (FWO-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tavernier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dose-dependent disruption of the p53/MDM2 interaction: comparison of different configurations. (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyckerman, S., Lemmens, I., Catteeuw, D. et al. Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat Methods 2, 427–433 (2005). https://doi.org/10.1038/nmeth760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing