Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microarray-based, high-throughput gene expression profiling of microRNAs

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that serve fundamental biological roles across eukaryotic species. We describe a new method for high-throughput miRNA detection. The technique is termed the RNA-primed, array-based Klenow enzyme (RAKE) assay, because it involves on-slide application of the Klenow fragment of DNA polymerase I to extend unmodified miRNAs hybridized to immobilized DNA probes. We used RAKE to study human cell lines and brain tumors. We show that the RAKE assay is sensitive and specific for miRNAs and is ideally suited for rapid expression profiling of all known miRNAs. RAKE offers unique advantages for specificity over northern blots or other microarray-based expression profiling platforms. Furthermore, we demonstrate that miRNAs can be isolated and profiled from formalin-fixed paraffin-embedded tissue, which opens up new opportunities for analyses of small RNAs from archival human tissue. The RAKE assay is theoretically versatile and may be used for other applications, such as viral gene profiling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of RNA-primed, array-based Klenow enzyme (RAKE) assay.
Figure 2: Sensitivity and dynamic range of RAKE and comparison to northern blots.
Figure 3: Representative agarose gels to demonstrate RNA used in the RAKE assay.
Figure 4: Representative images from RAKE assays.
Figure 5: Profiling and relative abundance of different miRNAs determined using RAKE.
Figure 6: Correlation between northern blots and RAKE assay for HeLa (H), Jurkat (J), malignant meningioma (M) and anaplastic oligodendroglioma (O).
Figure 7: RAKE is superior to northern blots in discriminating between miRNA paralogs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lee, R., Feinbaum, R. & Ambros, V. A short history of a short RNA. Cell 116, S89–S92 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ruvkun, G., Wightman, B. & Ha, I. The 20 years it took to recognize the importance of tiny RNAs. Cell 116, S93–S96 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  5. Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E. & Mourelatos, Z. The microRNA world: small is mighty. Trends Biochem. Sci. 28, 534–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Carrington, J.C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michael, M.Z., O'Connor, S.M., van Holst Pellekaan, N.G., Young, G.P. & James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003).

    CAS  PubMed  Google Scholar 

  9. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Murchison, E.P. & Hannon, G.J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ohtsuka, E., Nishikawa, S., Fukumoto, R., Tanaka, S. & Markham, A.F. Joining of synthetic ribotrinucleotides with defined sequences catalyzed by T4 RNA ligase. Eur. J. Biochem. 81, 285–291 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Romaniuk, E., McLaughlin, L.W., Neilson, T. & Romaniuk, P.J. The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur. J. Biochem. 125, 639–643 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. & Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sempere, L.F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lim, L.P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmittgen, T.D., Jiang, J., Liu, Q. & Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Allawi, H.T. et al. Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambros, V. et al. A uniform system for microRNA annotation. RNA 9, 277–279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nikiforov, T.T. et al. Genetic Bit Analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 22, 4167–4175 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Head, S.R. et al. Nested genetic bit analysis (N-GBA) for mutation detection in the p53 tumor suppressor gene. Nucleic Acids Res. 25, 5065–5071 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Deerlin, V.M., Gill, L.H. & Nelson, P.T. Optimizing gene expression analysis in archival brain tissue. Neurochem. Res. 27, 993–1003 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dai, H., Meyer, M., Stepaniants, S., Ziman, M. & Stoughton, R. Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays. Nucleic Acids Res. 30, e86 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramakrishnan, R. et al. An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. Nucleic Acids Res. 30, e30 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  28. El Fantroussi, S. et al. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays. Appl. Environ. Microbiol. 69, 2377–2382 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koizumi, Y. et al. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol. 68, 3215–3225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, W.T., Mirzabekov, A.D. & Stahl, D.A. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ. Microbiol. 3, 619–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Dorris, D.R. et al. Oligodeoxyribonucleotide probe accessibility on a three-dimensional DNA microarray surface and the effect of hybridization time on the accuracy of expression ratios. BMC Biotechnol. 3, 6 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Urakawa, H. et al. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl. Environ. Microbiol. 69, 2848–2856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guschin, D.Y. et al. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl. Environ. Microbiol. 63, 2397–2402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, Z. & Szostak, J.W. A simple method for 3′-labeling of RNA. Nucleic Acids Res. 24, 4360–4361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, Z. & Alsaidi, M. Selective labeling and detection of specific mRNA in a total-RNA sample. Anal. Biochem. 322, 269–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Brody, R.S., Doherty, K.G. & Zimmerman, P.D. Processivity and kinetics of the reaction of exonuclease I from E. coli with polydeoxyribonucleotides. J. Biol. Chem. 261, 7136–7143 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gillis, S. & Watson, J. Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. J. Exp. Med. 152, 1709–1719 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom. Cancer 39, 167–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, C.G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. USA 101, 9740–9744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miska, E.A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Korbler, T., Grskovic, M., Dominis, M. & Antica, M. A simple method for RNA isolation from formalin-fixed and paraffin-embedded lymphatic tissues. Exp. Mol. Pathol. 74, 336–340 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Strzelecki and F. Barr for insights into techniques of RNA extraction from paraffin sections; G. Straszewski for excellent technical assistance; and V. Lee for her support through US National Institutes of Health Training Grant T32-AG00255 (to P.N.). This work was also supported by a seed grant from the Penn Genomics Institute and the Department of Pathology & Laboratory Medicine (to Z.M. and D.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zissimos Mourelatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Charts demonstrating how the results of the RAKE assay compare between different samples. (PDF 37 kb)

Supplementary Table 1

Summary of tissues used for RNA studies. (PDF 6 kb)

Supplementary Methods (PDF 10 kb)

Supplementary Results (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, P., Baldwin, D., Scearce, L. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1, 155–161 (2004). https://doi.org/10.1038/nmeth717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing