Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies

Abstract

RNA interference (RNAi) has become an important technique for loss-of-gene-function studies in mammalian cells. To achieve reliable results in an RNAi experiment, efficient and specific silencing triggers are required. Here we present genome-wide data sets for the production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for human, mouse and rat. We used an algorithm to predict the optimal region for esiRNA synthesis for every protein-coding gene of these three species. We created a database, RiDDLE, for retrieval of target sequences and primer information. To test this in silico resource experimentally, we generated 16,242 esiRNAs that can be used for RNAi screening in human cells. Comparative analyses with chemically synthesized siRNAs demonstrated a high silencing efficacy of esiRNAs and a 12-fold reduction of downregulated off-target transcripts as detected by microarray analysis. Hence, the presented esiRNA libraries offer an efficient, cost-effective and specific alternative to presently available mammalian RNAi resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In silico prediction of esiRNA template sequences.
Figure 2: Gene-centric information in the RiDDLE database.
Figure 3: Generation of a human genome-wide esiRNA library.
Figure 4: Silencing efficacy of esiRNAs.
Figure 5: Silencing specificity of esiRNAs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    CAS  PubMed  Google Scholar 

  6. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Root, D.E., Hacohen, N., Hahn, W.C., Lander, E.S. & Sabatini, D.M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Bernards, R., Brummelkamp, T.R. & Beijersbergen, R.L. shRNA libraries and their use in cancer genetics. Nat. Methods 3, 701–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, A.L. & Linsley, P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 20, 521–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Scacheri, P.C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, X. et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jackson, A.L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Buchholz, F., Kittler, R., Slabicki, M. & Theis, M. Enzymatically prepared RNAi libraries. Nat. Methods 3, 696–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kittler, R. et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Henschel, A., Buchholz, F. & Habermann, B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32, W113–W120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kittler, R., Heninger, A.K., Franke, K., Habermann, B. & Buchholz, F. Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells. Nat. Methods 2, 779–784 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Heale, B.S., Soifer, H.S., Bowers, C. & Rossi, J.J. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res. 33, e30 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schubert, S., Grunweller, A., Erdmann, V.A. & Kurreck, J. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348, 883–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kulkarni, M.M. et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 3, 833–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, Y., Creanga, A., Lum, L. & Beachy, P.A. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Myers, J.W. et al. Minimizing off-target effects by using diced siRNAs for RNA interference. Journal of RNAi and Gene Silencing 2, 181–194 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Manber, U. & Myers, G. Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing 22, 935–948 (1993).

    Article  Google Scholar 

  27. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  28. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marchler-Bauer, A. et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Eberhard Krausz (Technology Development Studio, Max Planck Institute for Molecular Cell Biology and Genetics) for providing robotics support, and the Rosetta Gene Expression Laboratory for microarray hybridizations. This work was supported by the EU grants “FunGenES” (LSHG-CT-2003-503494), “Mitocheck” (LSHG-CT-2004-503464), by BMBF grant PTJ-BIO/0313130, the NGFN2 grant SMP-RNAi (01GR0402) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

R.K., A.K.H., M.S., M.T., G.P., K.F. and A.C. generated the human esiRNA library; V.S. and B.H. performed the in silico analyses; H.G. and J.W. performed automation; K.K. generated LIMS; E.R. and B.K. generated esiRNAs; C.F. performed QPCRs; C.S. and B.S. performed and analyzed QPCRs; J.G., J.S., J.B. and A.L.J. performed and analyzed microarray studies; P.S.L. analyzed microarray data; R.K. and F.B. designed and analyzed the experiments; R.K., V.S., A.L.J., B.H. and F.B. wrote the paper.

Corresponding authors

Correspondence to Bianca Habermann or Frank Buchholz.

Ethics declarations

Competing interests

V.S. and B.H. work for Scionics Computer Innovation.

E.R. and B.K. work for the RZPD.

C.F., C.S. and B.S. work for Cenix Bioscience.

J.G., J.S., J.B., P.S.L. and A.L.J. work for Rosetta Inpharmatics.

Supplementary information

Supplementary Fig. 1

Correlation of silencing efficacy between esiRNAs and siRNAs. (PDF 452 kb)

Supplementary Fig. 2

No induction of interferon response genes by esiRNA and siRNA. (PDF 600 kb)

Supplementary Fig. 3

Comparative analysis of off-target regulation. (PDF 319 kb)

Supplementary Table 1

Primer sequences used to generate esiRNAs. (PDF 13 kb)

Supplementary Table 2

Sequences of employed siRNAs. (PDF 11 kb)

Supplementary Table 3

Primers employed for QPCRs. (PDF 10 kb)

Supplementary Methods (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittler, R., Surendranath, V., Heninger, AK. et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat Methods 4, 337–344 (2007). https://doi.org/10.1038/nmeth1025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing