Abstract
Determining the structure of biological macromolecules by X-ray crystallography involves a series of steps: selection of the target molecule; cloning, expression, purification and crystallization; collection of diffraction data and determination of atomic positions. However, even when pure soluble protein is available, producing high-quality crystals remains a major bottleneck in structure determination. Here we present a guide for the non-expert to screen for appropriate crystallization conditions and optimize diffraction-quality crystal growth.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Maximizing binary interactome mapping with a minimal number of assays
Nature Communications Open Access 29 August 2019
-
Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography
Scientific Reports Open Access 07 February 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
McPherson, A. Crystallization of Biological Macromolecules (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1999).
Bergfors, T. Protein Crystallization: Techniques, Strategies, and Tips (International University Line, La Jolla, California, 1999).
Derewenda, Z.S. & Vekilov, P.G. Entropy and surface engineering in protein crystallization. Acta Crystallogr. D 62, 116–124 (2006).
Chayen, N.E. Protein crystallization for genomics: throughput versus output. J. Struct. Funct. Genomics 4, 115–120 (2003).
Jancarik, J. & Kim, S.H. Sparse-matrix sampling—a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411 (1991).
Gilliland, G.L., Tung, M., Blakeslee, D.M. & Ladner, J.E. Biological Macromolecule Crystallization Database, version-3.0—new features, data and the NASA Archive for Protein Crystal-Growth Data. Acta Crystallogr. D 50, 408–413 (1994).
Brzozowski, A.M. & Walton, J. Clear strategy screens for macromolecular crystallization. J. Appl. Cryst. 34, 97–101 (2001).
DeLucas, L.J. et al. Protein crystallization: virtual screening and optimization. Prog. Biophys. Mol. Biol. 88, 285–309 (2005).
Page, R. & Stevens, R.C. Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34, 373–389 (2004).
Rupp, B. & Wang, J. Predictive models for protein crystallization. Methods 34, 390–407 (2004).
Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation. J. Appl. Cryst. 36, 308–314 (2003).
Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179 (2003).
Bard, J., Ercolani, K., Svenson, K., Olland, A. & Somers, W. Automated systems for protein crystallization. Methods 34, 329–347 (2004).
Wilson, J. Automated classification of images from crystallization experiments. Adv. Data Mining 4065, 459–473 (2006).
Chayen, N.E., Stewart, P.D.S., Maeder, D.L. & Blow, D.M. An automated system for microbatch protein crystallization and screening. J. Appl. Cryst. 23, 297–302 (1990).
Chayen, N.E. Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr. D 54, 8–15 (1998).
Garcia-Ruiz, J.M. & Ng, J.D. Counterdiffusion capillary crystallization for high-throughput applications. in Protein Crystallization Strategies for Structural Genomics (ed. Chayen, N.E.) 111–126 (International University Line, La Jolla, California, 2007).
Moreno, A., Saridakis, E. & Chayen, N.E. Combination of oils and gels for enhancing the growth of protein crystals. J. Appl. Cryst. 35, 140–142 (2002).
Hansen, C. & Quake, S.R. Microfluidics in structural biology: smaller, faster... better. Curr. Opin. Struct. Biol. 13, 538–544 (2003).
Sommer, M.O.A. & Larsen, S. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator. J. Synchrotron Rad. 12, 779–785 (2005).
Zheng, B., Gerdts, C.J. & Ismagilov, R.F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr. Opin. Struct. Biol. 15, 548–555 (2005).
Ducruix, A. & Giegé, R. (eds.) Crystallization of Nucleic Acids and Proteins (Oxford University Press, Oxford, 1999).
Chayen, N.E. et al. Trends and challenges in experimental macromolecular crystallography. Q. Rev. Biophys. 29, 227–278 (1996).
Chayen, N.E. Methods for separating nucleation and growth in protein crystallization. Prog. Biophys. Mol. Biol. 88, 329–337 (2005).
Ataka, M. Protein crystal growth: an approach based on phase diagram determination. Phase Transit. 45, 205–219 (1993).
Stura, E.A. & Wilson, I.A. Application of the streak seeding technique in protein crystallization. J. Cryst. Growth 110, 270–282 (1991).
Chayen, N.E. Automation of non-conventional crystallization techniques for screening and optimization. in Macromolecular Crystallography: Conventional and High-Throughput Methods (eds. Sanderson, M.R. & Skelly, J.V.) 45–58 (Oxford University Press, Oxford, 2007).
Bergfors, T. Seeds to crystals. J. Struct. Biol. 142, 66–76 (2003).
McPherson, A. & Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239, 385–387 (1988).
Falini, G., Fermani, S., Conforti, G. & Ripamonti, A. Protein crystallization on chemically modified mica surfaces. Acta Crystallogr. D 58, 1649–1652 (2002).
Nanev, C.N. & Tsekova, D. Heterogeneous nucleation of hen-egg-white lysozyme-molecular approach. Cryst. Res. Technol. 35, 189–195 (2000).
Sanjoh, A., Tsukihara, T. & Gorti, S. Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening. J. Cryst. Growth 232, 618–628 (2001).
D'Arcy, A., Mac Sweeney, A. & Habera, A. Modified microbatch and seeding in protein crystallization experiments. J. Synchrotron Rad. 11, 24–26 (2004).
Chayen, N.E., Saridakis, E., El-Bahar, R. & Nemirovsky, Y. Porous silicon: an effective nucleation-inducing material for protein crystallization. J. Mol. Biol. 312, 591–595 (2001).
Chayen, N.E., Saridakis, E. & Sear, R.P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl. Acad. Sci. USA 103, 597–601 (2006).
Saridakis, E.E.G., Stewart, P.D.S., Lloyd, L.F. & Blow, D.M. Phase-diagram and dilution experiments in the crystallization of carboxypeptidase G2 . Acta Crystallogr. D 50, 293–297 (1994).
Saridakis, E. & Chayen, N.E. Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. Biophys. J. 84, 1218–1222 (2003).
Blow, D.M., Chayen, N.E., Lloyd, L.F. & Saridakis, E. Control of nucleation of protein crystals. Protein Sci. 3, 1638–1643 (1994).
Krengel, U. et al. Preliminary X-ray crystallographic analysis of the secreted chorismate mutase from Mycobacterium tuberculosis: a tricky crystallization problem solved. Acta Crystallogr. F 62, 441–445 (2006).
Gerdts, C.J. et al. Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew. Chem. Int. Ed. 45, 8156–8160 (2006).
Karpowich, N. et al. Crystal structures of MJ1267 reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9, 571–586 (2001).
Garcia-Ruiz, J.M., Gonzalez-Ramirez, L.A., Gavira, J.A. & Otalora, F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. Acta Crystallogr. D 58, 1638–1642 (2002).
Snell, E.H. & Helliwell, J.R. Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799–853 (2005).
Heijna, M.C.R. et al. Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007).
Talreja, S., Kim, D.Y., Mirarefi, A.Y., Zukoski, C.F. & Kenis, P.J.A. Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. J. Appl. Cryst. 38, 988–995 (2005).
Chayen, N.E. A novel technique to control the rate of vapour diffusion, giving larger protein crystals. J. Appl. Cryst. 30, 198–202 (1997).
Mayans, O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869 (1998).
Isupov, M.N. et al. Crystallization and preliminary X-ray diffraction studies of a fungal hydrolase from Ophiostoma novo-ulmi. Acta Crystallogr. D 60, 1879–1882 (2004).
Schubot, F.D., Cherry, S., Austin, B.P., Tropea, J.E. & Waugh, D.S. Crystal structure of the protease-resistant core domain of Yersinia pestis virulence factor YopR. Protein Sci. 14, 1679–1683 (2005).
Khurshid, S., Govada, L. & Chayen, N.E. Dynamic screening experiments to maximize hits for crystallization. Cryst. Growth Des. 7, 2171–2175 (2007).
D'Arcy, A. Crystallizing proteins—a rational approach? Acta Crystallogr. D 50, 469–471 (1994).
Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W.M. & Chayen, N.E. Separating nucleation and growth in protein crystallization using dynamic light scattering. Acta Crystallogr. D 58, 1597–1600 (2002).
Wilson, W.W. Light scattering as a diagnostic for protein crystal growth—a practical approach. J. Struct. Biol. 142, 56–65 (2003).
Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).
Chayen, N.E. Turning protein crystallization from an art into a science. Curr. Opin. Struct. Biol. 14, 577–583 (2004).
Nollert, P. From test tube to plate: a simple procedure for the rapid preparation of microcrystallization experiments using the cubic phase method. J. Appl. Cryst. 35, 637–640 (2002).
Peddi, A. et al. M. High-throughput automated system for crystallizing membrane proteins in lipidic mesophases. IEEE Trans. Automat. Sci. Eng. 4, 129–140 (2007).
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. & Landau. E.M. X-Ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).
Cherozov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).
Snider, H., Barrends, T. & Dijkstra, D. Crystallization of phospholipase A in two biological oligomerization states. in Methods and Results in Crystallization of Membrane Proteins (ed. Iwata, S.) 265–278 (International University Line, La Jolla, California, 2003).
Stock, D., Leslie, A.G. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).
Acknowledgements
We acknowledge funding from the Engineering and Physical Sciences Research Council UK (EP/D501113/1) and the European Commission OptiCryst project LSHG-CT-2006-037793.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–2, Supplementary Note 1, Supplementary Protocols 1–2 (PDF 514 kb)
Rights and permissions
About this article
Cite this article
Chayen, N., Saridakis, E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5, 147–153 (2008). https://doi.org/10.1038/nmeth.f.203
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.f.203
This article is cited by
-
Growing and making nano- and microcrystals
Nature Protocols (2023)
-
CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks
Nature Methods (2022)
-
Macromolecular crystallization: basics and advanced methodologies
Journal of the Iranian Chemical Society (2021)
-
Effects of Small Biomolecules on Lysozyme Crystallization
Transactions of Tianjin University (2021)
-
Protein crystallization screening using enhanced associative experimental design
Network Modeling Analysis in Health Informatics and Bioinformatics (2019)