histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data

Subjects

Abstract

Single-cell, spatially resolved omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational histology topography cytometry analysis toolbox (histoCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell–cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of histoCAT through analysis of highly multiplexed mass cytometry images of human breast cancer tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Multiscale analysis of the tissue ecosystem.
Figure 2: Round-trip analysis of unique cell types in high-dimension images of breast cancer.
Figure 3: Neighborhood analysis of breast cancer cell phenotypes.

References

  1. 1

    Tirosh, I. et al. Science 352, 189–196 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Bendall, S.C. et al. Science 332, 687–696 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Bodenmiller, B. et al. Nat. Biotechnol. 30, 858–867 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Tabassum, D.P. & Polyak, K. Nat. Rev. Cancer 15, 473–483 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Lee, J.H. et al. Science 343, 1360–1363 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. & Zhuang, X. Science 348, aaa6090 (2015).

    Article  Google Scholar 

  7. 7

    Lin, J.-R., Fallahi-Sichani, M. & Sorger, P.K. Nat. Commun. 6, 8390 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Schubert, W. et al. Nat. Biotechnol. 24, 1270–1278 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Gerdes, M.J. et al. Proc. Natl. Acad. Sci. USA 110, 11982–11987 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Angelo, M. et al. Nat. Med. 20, 436–442 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Giesen, C. et al. Nat. Methods 11, 417–422 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Bodenmiller, B. Cell Syst. 2, 225–238 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Ding, H., Wang, C., Huang, K. & Machiraju, R. BMC Bioinformatics 16, S10 (2015).

    Article  Google Scholar 

  14. 14

    Beck, A.H. et al. Sci. Transl. Med. 3, 108ra113 (2011).

    Article  Google Scholar 

  15. 15

    Jones, T.R. et al. BMC Bioinformatics 9, 482 (2008).

    Article  Google Scholar 

  16. 16

    Amir, A.D. et al. Nat. Biotechnol. 31, 545–552 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Shekhar, K., Brodin, P., Davis, M.M. & Chakraborty, A.K. Proc. Natl. Acad. Sci. USA 111, 202–207 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Rieckmann, J.C. et al. Nat. Immunol. 18, 583–593 (2017).

    CAS  Article  Google Scholar 

  19. 19

    Levine, J.H. et al. Cell 162, 184–197 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Ostuni, R., Kratochvill, F., Murray, P.J. & Natoli, G. Trends Immunol. 36, 229–239 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Kononen, J. et al. Nat. Med. 4, 844–847 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Catena, R., Özcan, A., Jacobs, A., Chevrier, S. & Bodenmiller, B. Genome Biol. 17, 142 (2016).

    Article  Google Scholar 

  23. 23

    Wang, H.A.O. et al. Anal. Chem. 85, 10107–10116 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F.A. in Proc. 2011 8th IEEE International Symposium on. Biomedical Imaging: From Nano to Macro 230–233 (IEEE, 2011).

  25. 25

    Schüffler, P.J. et al. Cytometry A 87, 936–942 (2015).

    Article  Google Scholar 

  26. 26

    Weber, L.M. & Robinson, M.D. Cytometry A 89, 1084–1096 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Bodenmiller lab for support and fruitful discussions. Thank you to open-source softwares like “cyt”, “CellProfiler,” and many others. This work was supported by the Swiss National Science Foundation (SNSF) R'Equip grant 316030-139220, an SNSF Assistant Professorship grant PP00P3-144874, a Swiss Cancer League grant, the PhosphonetPPM and MetastasiX SystemsX grants, and funding from the European Research Council (ERC) under the European Union′s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 336921. D. Schapiro was supported by the Forschungskredit of the University of Zurich, grant FK-74419-01-01, and the BioEntrepreneur-Fellowship of the University of Zurich, reference no. BIOEF-17-001. H.W.J. and D. Schulz are supported by European Molecular Biology Organization (EMBO) Long Term Fellowships cofunded by the European Commission (LTFCOFUND2013 and 2014), grants ALTF-711 2015 and ALTF-970 2014, respectively. H.W.J. was also supported by a Transition Postdoc Fellowship from the Swiss SystemsX.ch initiative ref. 2015/344, evaluated by the Swiss National Science Foundation.

Author information

Affiliations

Authors

Contributions

D. Schapiro, H.W.J., and B.B. conceived of the project and software. H.W.J., C.G., and R.C. collected samples and validated antibodies. Z.V. assembled, classified, and provided tumor samples. H.W.J. completed the staining and image acquisition. D. Schapiro, S.R., and J.R.F. wrote the code. D. Schapiro, H.W.J., and D. Schulz tested software on multiple data sources. D. Schapiro, H.W.J., and V.R.T.Z. analyzed the images and single-cell data. D. Schapiro, H.W.J., and B.B. prepared the figures and wrote the manuscript. B.B. directed the project.

Corresponding author

Correspondence to Bernd Bodenmiller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Notes 1–4. (PDF 69995 kb)

Life Sciences Reporting Summary

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Table 2

Patient Metadata (XLSX 47 kb)

Supplementary Dataset 1

Source Data for Figure 2 (TXT 12656 kb)

Supplementary Dataset 2

Source Data for Supplementary Figure 3 (XLS 80 kb)

Supplementary Software 1

histoCAT_MacOS12 (ZIP 17932 kb)

Supplementary Software 2

histoCAT_Windows7 (EXE 20372 kb)

Supplementary Software 3

histoCAT_Windows10 (EXE 19986 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schapiro, D., Jackson, H., Raghuraman, S. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods 14, 873–876 (2017). https://doi.org/10.1038/nmeth.4391

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing