Vibrio natriegens as a fast-growing host for molecular biology

Abstract

A rapidly growing bacterial host would be desirable for a range of routine applications in molecular biology and biotechnology. The bacterium Vibrio natriegens has the fastest growth rate of any known organism, with a reported doubling time of <10 min. We report the development of genetic tools and methods to engineer V. natriegens and demonstrate the advantages of using these engineered strains in common biotech processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Growth comparison of V. natriegens to several commonly used E. coli strains.
Figure 2: GFP expression from V. natriegens with an inducible T7 RNA polymerase driving expression of a plasmid-borne gene under a T7 promoter.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. 1

    Eagon, R.G. J. Bacteriol. 83, 736–737 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Payne, W.J. J. Bacteriol. 76, 301–307 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Payne, W.J., Eagon, R.G. & Williams, A.K. Antonie van Leeuwenhoek 27, 121–128 (1961).

    CAS  Article  Google Scholar 

  4. 4

    Maida, I. et al. Genome Announc. 1, e00648–13 (2013).

    Article  Google Scholar 

  5. 5

    Simon, R., Priefer, U. & Pühler, A. Nat. Biotechnol. 1, 784–791 (1983).

    CAS  Article  Google Scholar 

  6. 6

    Wanner, B.L., Kodaira, R. & Neidhardt, F.C. J. Bacteriol. 130, 212–222 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Brosius, J., Erfle, M. & Storella, J. J. Biol. Chem. 260, 3539–3541 (1985).

    CAS  PubMed  Google Scholar 

  8. 8

    Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. J. Bacteriol. 177, 4121–4130 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Remaut, E., Stanssens, P. & Fiers, W. Gene 15, 81–93 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Bernard, P., Gabant, P., Bahassi, E.M. & Couturier, M. Gene 148, 71–74 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Langer, S.J., Ghafoori, A.P., Byrd, M. & Leinwand, L. Nucleic Acids Res. 30, 3067–3077 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Methods Enzymol. 185, 60–89 (1990).

    CAS  Article  Google Scholar 

  14. 14

    Baumann, P., Baumann, L. & Mandel, M. J. Bacteriol. 107, 268–294 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Edelman, A., Joliff, G., Klier, A. & Rapoport, G. FEMS Microbiol. Lett. 52, 117–120 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Biedendieck, R. et al. J. Biotechnol. 132, 426–430 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Käll, L., Krogh, A. & Sonnhammer, E.L.L. J. Mol. Biol. 338, 1027–1036 (2004).

    Article  Google Scholar 

  18. 18

    Oliver, J.D. FEMS Microbiol. Rev. 34, 415–425 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Kong, I.S. et al. FEMS Microbiol. Ecol. 50, 133–142 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Abe, A., Ohashi, E., Ren, H., Hayashi, T. & Endo, H. Microbiol. Res. 162, 130–138 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Casali, N. Methods Mol. Biol. 235, 27–48 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Pósfai, G. et al. Science 312, 1044–1046 (2006).

    Article  Google Scholar 

  23. 23

    Morimoto, T. et al. DNA Res. 15, 73–81 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Gibson, D.G. Nat. Methods 11, 521–526 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Annaluru, N. et al. Science 344, 55–58 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Haimovich, A.D., Muir, P. & Isaacs, F.J. Nat. Rev. Genet. 16, 501–516 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Hutchison, C.A. III et al. Science 351, aad6253 (2016).

    Article  Google Scholar 

  28. 28

    Robson, R.L., Jones, R., Robson, R.M., Schwartz, A. & Richardson, T.H. PLoS One 10, e0127997 (2015).

    Article  Google Scholar 

  29. 29

    Aziz, R.K. et al. BMC Genomics 9, 75 (2008).

    Article  Google Scholar 

  30. 30

    Varani, A.M., Siguier, P., Gourbeyre, E., Charneau, V. & Chandler, M. Genome Biol. 12, R30 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Zhou, Y., Liang, Y., Lynch, K.H., Dennis, J.J. & Wishart, D.S. Nucleic Acids Res. 39, 8857–8868 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. Nucleic Acids Res. 38, D234–D236 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Weisstein, E.W. MathWorld—A Wolfram Web Resource http://mathworld.wolfram.com/LeastSquaresFittingExponential.html (accessed 24 June 2016).

  34. 34

    Inoue, H., Nojima, H. & Okayama, H. Gene 96, 23–28 (1990).

    CAS  Article  Google Scholar 

  35. 35

    Darling, A.C.E., Mau, B., Blattner, F.R. & Perna, N.T. Genome Res. 14, 1394–1403 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Darling, A.E., Mau, B. & Perna, N.T. PLoS One 5, e11147 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Fu, C. Ludka, R. Morey, and J. Gill for assistance with genome sequencing; A. Schwartz and D. Brami for assistance with genome assembly and annotation; T. Richardson and V. Akella for providing bioinformatics analysis and support; B. Griffin and R. Monds for technical advice; and J.C. Venter, H. Smith, O. Fetzer, and T. Peterson for their support and input on the project.

Author information

Affiliations

Authors

Contributions

M.T.W. conceived the study; M.T.W., E.D.H., C.M.W., and D.G.G. designed experiments; M.T.W., E.D.H., and C.M.W. performed experiments; M.T.W., E.D.H., C.M.W., and D.G.G. analyzed data and wrote the paper.

Corresponding authors

Correspondence to Matthew T Weinstock or Daniel G Gibson.

Ethics declarations

Competing interests

M.T.W., E.D.H., C.M.W. and D.G.G. are employed by Synthetic Genomics, Inc. (SGI), a privately held company that funded this work. SGI has filed a provisional application with the US Patent and Trademark Office on aspects of this research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–4 and Supplementary Notes 1–5. (PDF 2717 kb)

Supplementary Data

Plasmid sequences. (ZIP 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinstock, M., Hesek, E., Wilson, C. et al. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13, 849–851 (2016). https://doi.org/10.1038/nmeth.3970

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing