Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data

Abstract

We developed single-image fluorescence lifetime imaging microscopy (siFLIM), a method for acquiring quantitative lifetime images from a single exposure. siFLIM takes advantage of a new generation of dedicated cameras that simultaneously record two 180°-phase-shifted images, and it allows for video-rate lifetime imaging with minimal phototoxicity and bleaching. siFLIM is also inherently immune to artifacts stemming from rapid cellular movements and signal transients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-image FLIM time-lapse experiment.
Figure 2: siFLIM detection of histamine-induced alterations in Gq activation and Ca2+ concentration in cultured HeLa cells.
Figure 3: Pushing siFLIM to its limits.

References

  1. 1

    Lin, H.J., Herman, P. & Lakowicz, J.R. Cytometry A 52, 77–89 (2003).

    Article  Google Scholar 

  2. 2

    Chen, N.T. et al. PLoS ONE 7, e44947 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Kuil, J. et al. ChemBioChem 12, 1897–1903 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Okabe, K. et al. Nat. Commun. 3, 705 (2012).

    Article  Google Scholar 

  5. 5

    van der Krogt, G.N.M., Ogink, J., Ponsioen, B. & Jalink, K. PLoS ONE 3, e1916 (2008).

    Article  Google Scholar 

  6. 6

    Klarenbeek, J.B., Goedhart, J., Hink, M.A., Gadella, T.W.J. & Jalink, K. PLoS ONE 6, e19170 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Gadella, T.W.J., van Hoek, A. & Visser, A.J.W.G. J. Fluoresc. 7, 35–43 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Hanley, Q.S., Subramaniam, V., Arndt-Jovin, D.J. & Jovin, T.M. Cytometry 43, 248–260 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Lakowicz, J.R. (ed) Princ. Fluoresc. Spectrosc. (Springer, New York, 2006).

  10. 10

    Esposito, A., Oggier, T., Gerritsen, H.C., Lustenberger, F. & Wouters, F.S. Opt. Express 13, 9812–9821 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Esposito, A., Gerritsen, H.C., Oggier, T., Lustenberger, F. & Wouters, F.S. J. Biomed. Opt. 11, 034016 (2006).

    Article  Google Scholar 

  12. 12

    Zhao, Q. et al. J. Biomed. Opt. 17, 126020 (2012).

    Article  Google Scholar 

  13. 13

    Klarenbeek, J., Goedhart, J., van Batenburg, A., Groenewald, D. & Jalink, K. PLoS ONE 10, e0122513 (2015).

    Article  Google Scholar 

  14. 14

    Schneider, P.C. & Clegg, R.M. Rev. Sci. Instrum. 68, 4107–4119 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Tilly, B.C. et al. Biochem. J. 266, 235–243 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Tilly, B.C. et al. J. Cell Biol. 110, 1211–1215 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Hishinuma, S. & Ogura, K. J. Neurochem. 75, 772–781 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Murakoshi, H., Lee, S.J. & Yasuda, R. Brain Cell Biol. 36, 31–42 (2008).

    Article  Google Scholar 

  19. 19

    Claycomb, W.C. et al. Proc. Natl. Acad. Sci. USA 95, 2979–2984 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Labrousse, A.M. et al. Front. Immunol. 2, 51 (2011).

    Article  Google Scholar 

  21. 21

    Johansson, M. et al. J. Cell Biol. 176, 459–471 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Mitchell, A.C., Wall, J.E., Murray, J.G. & Morgan, C.G. J. Microsc. 206, 233–238 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Mitchell, A.C., Wall, J.E., Murray, J.G. & Morgan, C.G. J. Microsc. 206, 225–232 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Ganesan, S., Ameer-Beg, S.M., Ng, T.T.C., Vojnovic, B. & Wouters, F.S. Proc. Natl. Acad. Sci. USA 103, 4089–4094 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Chen, H. & Gratton, E. Microsc. Res. Tech. 76, 282–289 (2013).

    Article  Google Scholar 

  26. 26

    Digman, M.A., Caiolfa, V.R., Zamai, M. & Gratton, E. Biophys. J. 94, L14–L16 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Gadella, T.W.J., Jovin, T.M. & Clegg, R.M. Biophys. Chem. 48, 221–239 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Klarenbeek for plasmids encoding EPAC sensors and W. Zwart and J. Neefjes for providing plasmids encoding GFP-Rab7 and RFP-RILP. This research is funded from ERC grant 249997, awarded to T. Sixma; KWF grant NKI2010-4626, awarded to K.J.; and IOP Project IPD083412A awarded by Agentschap NL to K.J. and I.T.Y. The LI2CAM FLIM-camera was purchased with help of the Maurits and Anna de Kock foundation.

Author information

Affiliations

Authors

Contributions

M.R., K.M.K. and Q.Z. performed the experiments and M.R., K.M.K., B.v.d.B., I.T.Y. and K.J. analyzed the data. J.H., S.d.J., B.v.d.B. and K.J. optimized hardware and software for siFLIM. T.W.J.G., B.v.d.B., K.M.K. and K.J. developed the mathematical framework for siFLIM. K.M.K. and K.J. carried out the sensitivity analysis. I.T.Y. led the team developing the MEMFLIM chip; J.G. and M.M. developed and tested the Gq sensor; K.J., M.R., K.M.K., B.v.d.B. and I.T.Y. wrote the manuscript and K.J. conceived and supervised the study.

Corresponding author

Correspondence to Kees Jalink.

Ethics declarations

Competing interests

M.R., K.M.K., Q.Z., B.v.d.B., J.G., M.M., T.W.J.G., I.T.Y. and K.J. declare no competing financial interests. J.H. and S.d.J. are employees of Lambert Instruments.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Notes 1 and 2, and Supplementary Discussion (PDF 5440 kb)

Rapid Ca2+ oscillations as detected by siFLIM

Lifetime data are calculated from the MEMFLIM image pair recorded at Φ = 60°. HeLa cells loaded with fluorescent calcium indicator were stimulated with histamine (t = 20 s), with ionomycin (t = 210 s) followed by addition of extra Ca2+ (3 mM at t = 220 s). The intensity line-plots are taken from the ROIS with corresponding colors. The kymograph shows lifetime data taken from the rectangle indicated in white. Sampling rate is 6 Hz. (AVI 23186 kb)

siFLIM is immune to movement artefacts

Lifetime data recorded by 12-phase frequency-domain FLIM (left) and by siFLIM (right) from HeLa cells expressing GFPRab7 and mRFP-RILP. Note that fast-moving vesicles display artefacts in the 12-phase data but not in the siFLIM results. (AVI 1036 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raspe, M., Kedziora, K., van den Broek, B. et al. siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data. Nat Methods 13, 501–504 (2016). https://doi.org/10.1038/nmeth.3836

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing