Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Time-resolved crystallography using the Hadamard transform

A Corrigendum to this article was published on 29 January 2015

This article has been updated

Abstract

We describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of classical pump-probe and HATRX methods.
Figure 2: Difference electron density maps showing the comparison of control and HATRX data for thaumatin.
Figure 3: Experimental design used to demonstrate HATRX.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 08 January 2015

    In the version of this article initially published, the Figure 2 legend misidentified the control data as on the left and the HATRX data as on the right. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Copeland, R.A. Future Med. Chem. 3, 1491–1501 (2011).

    Article  CAS  Google Scholar 

  2. Giuseppone, N., Fuks, G. & Lehn, J.-M. Chemistry 12, 1723–1735 (2006).

    Article  CAS  Google Scholar 

  3. Buryak, A. & Severin, K. Angew. Chem. Int. Edn. Engl. 44, 7935–7938 (2005).

    Article  CAS  Google Scholar 

  4. Zewail, A.H. in Femtochemistry: Ultrafast Dynamics of the Chemical Bond I (World Scientific, 1994).

  5. Bourgeois, D. & Weik, M. Crystallogr. Rev. 15, 87–118 (2009).

    Article  CAS  Google Scholar 

  6. Neutze, R. & Moffat, K. Curr. Opin. Struct. Biol. 22, 651–659 (2012).

    Article  CAS  Google Scholar 

  7. Jung, Y.O. et al. Nat. Chem. 5, 212–220 (2013).

    Article  CAS  Google Scholar 

  8. Schotte, F. et al. Proc. Natl. Acad. Sci. USA 109, 19256–19261 (2012).

    Article  CAS  Google Scholar 

  9. Lindenberg, A.M. et al. Phys. Rev. Lett. 84, 111–114 (2000).

    Article  CAS  Google Scholar 

  10. Beaud, P. et al. Phys. Rev. Lett. 103, 155702–155706 (2009).

    Article  CAS  Google Scholar 

  11. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  12. Holton, J.M. & Frankel, K.A. Acta Crystallogr. D Biol. Crystallogr. 66, 393–408 (2010).

    Article  CAS  Google Scholar 

  13. Moffat, K. Chem. Rev. 101, 1569–1581 (2001).

    Article  CAS  Google Scholar 

  14. Hamm, P., Lim, M. & Hochstrasser, R.M. J. Chem. Phys. 102, 6123–6138 (1998).

    Article  CAS  Google Scholar 

  15. Porter, G. Proc. R. Soc. Lond. A Math. Phys. Sci. 200, 284–300 (1950).

    Article  CAS  Google Scholar 

  16. Harwit, M. & Sloane, N.J.A. in Hadamard Transform Optics. (Academic Press, 1979).

  17. Fernández, F. et al. Anal. Chem. 74, 1611–1617 (2002).

    Article  Google Scholar 

  18. Bolinger, L. & Leigh, J. J. Magn. Reson. 80, 162–167 (1988).

    Google Scholar 

  19. Garman, E.F. Acta Crystallogr. D Biol. Crystallogr. 66, 339–351 (2010).

    Article  CAS  Google Scholar 

  20. Owen, R.L., Rudino-Pinera, E. & Garman, E.F. Proc. Natl. Acad. Sci. USA 103, 4912–4917 (2006).

    Article  CAS  Google Scholar 

  21. Paithankar, K.S. & Garman, E.F. Acta Crystallogr. D Biol. Crystallogr. 66, 381–388 (2010).

    Article  CAS  Google Scholar 

  22. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  23. Evans, P.R. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    Article  CAS  Google Scholar 

  24. Waterman, D. & Evans, G. J. Appl. Cryst. 43, 1356–1371 (2010).

    Article  CAS  Google Scholar 

  25. French, G.S. & Wilson, K.S. Acta Crystallogr. A 34, 517–525 (1978).

    Article  Google Scholar 

  26. Sauter, C., Lorber, B. & Giegé, R. Proteins 48, 146–150 (2002).

    Article  CAS  Google Scholar 

  27. Murshudov, G.N. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  28. Broennimann, C. et al. J. Synchrotron Radiat. 13, 120–130 (2006).

    Article  CAS  Google Scholar 

  29. Cammarata, M. et al. Rev. Sci. Instrum. 80, 15101–15110 (2009).

    Article  Google Scholar 

  30. Graber, T. et al. Synchrotron Radiat. 18, 658–670 (2011).

    Article  CAS  Google Scholar 

  31. Nozawa, S. et al. J. Synchrotron Radiat. 14, 313–319 (2007).

    Article  CAS  Google Scholar 

  32. Cole, J.M. Chem. Soc. Rev. 33, 501–513 (2004).

    Article  CAS  Google Scholar 

  33. Sun, C., Portmann, G., Hertlein, M., Kirz, J. & Robin, D.S. Phys. Rev. Lett. 109, 264801–264805 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.A.Y. is supported by the Wellcome Trust 4-year PhD program “The Molecular Basis of Biological Mechanisms” 089312/Z/09/Z. This work was also supported by the EPSRC Award “Dynamic Structural Science at the Research Complex at Harwell” EP/I01974X/1 and by BBSRC Award BB/H001905/1. Diffraction data were collected on beamline I24 at Diamond Light Source under proposal nt5810. We thank Diamond Light Source and the staff of I24 for beamtime and support and D. Waterman (CCP4) for the SUMSUB code. We also thank P. Raithby, C. Wilson, J. Trincao, J. Christensen, M. Hamilton, E. Snell, T. Burnley, C. Wood and C. Ballard for useful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.S.B. and B.A.Y. originally proposed the application of the Hadamard transform to time-resolved experiments. B.A.Y., R.L.O. and A.R.P. devised the proof-of-principle crystallographic experiment and collected the data. B.A.Y., R.L.O., G.S.B. and A.R.P. all processed data, wrote software and jointly wrote the manuscript.

Corresponding authors

Correspondence to Godfrey S Beddard, Robin L Owen or Arwen R Pearson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 4 and 5. (PDF 10730 kb)

Supplementary Table 1

Scaling statistics for the reference data (XLSX 102 kb)

Supplementary Table 2

Scaling statistics for the n = 3 HATRX data (XLSX 93 kb)

Supplementary Table 3

Weighted R factors (W rel) by resolution shell14 for the comparison of the reference data (R) at each time point with the HATRX data. (XLSX 56 kb)

Supplementary Software 1

This script takes a user defined set of images from multiple crystals and produces an integrated list of reflections using XDS. These data can then be scaled, merged and converted to structure factors using the CCP4 software suite. (TXT 10 kb)

Supplementary Software 2

This script takes a plain text file (with the format H K L F1 SIGF1 F2 SIGF2 ... Fn SIGFn), calculates the S-matrix and carries out the HATRX transform. It outputs a plain text file in the same format as the input data. (TXT 3 kb)

Supplementary Software 3

This script converts the output of 2_HATRX.py into a CCP4 format mtz file ready for further analysis using any standard crystallographic software package. (TXT 0 kb)

Supplementary Software 4

This script uses the sumsub routine to create HATRX encoded images from a series of CBF format images. It was used to create the HATRX images here to show proof of principle of the method. When the HATRX data are generated by detector or beam encoding this step is not required. (TXT 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorke, B., Beddard, G., Owen, R. et al. Time-resolved crystallography using the Hadamard transform. Nat Methods 11, 1131–1134 (2014). https://doi.org/10.1038/nmeth.3139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing