Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Measuring similarity between dynamic ensembles of biomolecules

Abstract

We present a simple and general approach termed REsemble for quantifying population overlap and structural similarity between ensembles. This approach captures improvements in the quality of ensembles determined using increasing input experimental data—improvements that go undetected when conventional methods for comparing ensembles are used—and reveals unexpected similarities between RNA ensembles determined using NMR and molecular dynamics simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring population overlap and structural similarity between ensembles.
Figure 2: Comparing MD-generated and NMR RDC–selected ensembles of HIV-1 TAR.

Similar content being viewed by others

References

  1. Jensen, M.R. et al. Structure 17, 1169–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Clore, G.M. & Schwieters, C.D. Biochemistry 43, 10678–10691 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Salmon, L., Yang, S. & Al-Hashimi, H.M. Annu. Rev. Phys. Chem. 10.1146/annurev-physchem-040412-110059 (16 December 2013).

  4. Boehr, D.D., Nussinov, R. & Wright, P.E. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wand, A.J. Curr. Opin. Struct. Biol. 23, 75–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Stelzer, A.C. et al. Nat. Chem. Biol. 7, 553–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Richardson, J.S. & Richardson, D.C. Annu. Rev. Biophys. 42, 1–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindorff-Larsen, K. & Ferkinghoff-Borg, J. PLoS ONE 4, e4203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fisher, C.K., Huang, A. & Stultz, C.M. J. Am. Chem. Soc. 132, 14919–14927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Simone, A., Richter, B., Salvatella, X. & Vendruscolo, M. J. Am. Chem. Soc. 131, 3810–3811 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Cha, S.-H. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007).

    Google Scholar 

  12. Brüschweiler, R. Curr. Opin. Struct. Biol. 13, 175–183 (2003).

    Article  PubMed  Google Scholar 

  13. Frank, A.T., Stelzer, A.C., Al-Hashimi, H.M. & Andricioaei, I. Nucleic Acids Res. 37, 3670–3679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marsh, J.A., Teichmann, S.A. & Forman-Kay, J.D. Curr. Opin. Struct. Biol. 22, 643–650 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y., Campbell, S.L. & Dokholyan, N.V. Biophys. J. 93, 2300–2306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tjandra, N. & Bax, A. Science 278, 1111–1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Bailor, M.H., Mustoe, A.M., Brooks, C.L. III. & Al-Hashimi, H.M. Nat. Protoc. 6, 1536–1545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salmon, L., Bascom, G., Andricioaei, I. & Al-Hashimi, H.M. J. Am. Chem. Soc. 135, 5457–5466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denning, E.J., Priyakumar, U.D., Nilsson, L. & Mackerell, A.D. Jr. J. Comput. Chem. 32, 1929–1943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisher, C.K., Zhang, Q., Stelzer, A. & Al-Hashimi, H.M. J. Phys. Chem. B 112, 16815–16822 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Al-Hashimi laboratory for critical comments on the manuscript. This work was supported by the US National Institutes of Health (R01AI066975 and PO1 GM0066275).

Author information

Authors and Affiliations

Authors

Contributions

S.Y., L.S. and H.M.A.-H. conceived the idea; S.Y. and L.S. carried out the data analysis with help from H.M.A.-H.; S.Y., L.S. and H.M.A.-H. wrote the paper.

Corresponding author

Correspondence to Hashim M Al-Hashimi.

Ethics declarations

Competing interests

H.M.A.-H. is an advisor to and holds an ownership interest in Nymirum, an RNA-based drug discovery company.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1631 kb)

Supplementary Software

Source code of SAS and ensemble similarity measurement (ZIP 95 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Salmon, L. & Al-Hashimi, H. Measuring similarity between dynamic ensembles of biomolecules. Nat Methods 11, 552–554 (2014). https://doi.org/10.1038/nmeth.2921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing