Efficient multivariate linear mixed model algorithms for genome-wide association studies

Abstract

Multivariate linear mixed models (mvLMMs) are powerful tools for testing associations between single-nucleotide polymorphisms and multiple correlated phenotypes while controlling for population stratification in genome-wide association studies. We present efficient algorithms in the genome-wide efficient mixed model association (GEMMA) software for fitting mvLMMs and computing likelihood ratio tests. These algorithms offer improved computation speed, power and P-value calibration over existing methods, and can deal with more than two phenotypes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Statistical benefits of the mvLMM algorithm implemented in GEMMA.

References

  1. 1

    Henderson, C.R. Applications of Linear Models in Animal Breeding (University of Guelph, 1984).

  2. 2

    Price, A.L. et al. PLoS Genet. 7, e1001317 (2011).

  3. 3

    Korte, A. et al. Nat. Genet. 44, 1066–1071 (2012).

  4. 4

    Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Bioinformatics 28, 2540–2542 (2012).

  5. 5

    Trzaskowski, M., Yang, J., Visscher, P.M. & Plomin, R. Mol. Psychiatry 10.1038/mp.2012.191 (29 January 2013).

  6. 6

    Vattikuti, S., Guo, J. & Chow, C.C. PLoS Genet. 8, e1002637 (2012).

  7. 7

    Amos, C.I. Am. J. Hum. Genet. 54, 535–543 (1994).

  8. 8

    Kruuk, L.E. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004).

  9. 9

    Meyer, K., Johnston, D.J. & Graser, H.U. Aust. J. Agric. Res. 55, 195–210 (2004).

  10. 10

    Meyer, K. Genet. Sel. Evol. 23, 67–83 (1991).

  11. 11

    Kang, H.M. et al. Nat. Genet. 42, 348–354 (2010).

  12. 12

    Lippert, C. et al. Nat. Methods 8, 833–835 (2011).

  13. 13

    Pirinen, M., Donnelly, P. & Spencer, C.C.A. Ann. Appl. Stat. 7, 369–390 (2013).

  14. 14

    Yu, J.M. et al. Nat. Genet. 38, 203–208 (2006).

  15. 15

    Zhang, Z.W. et al. Nat. Genet. 42, 355–360 (2010).

  16. 16

    Zhou, X., Carbonetto, P. & Stephens, M. PLoS Genet. 9, e1003264 (2013).

  17. 17

    Zhou, X. & Stephens, M. Nat. Genet. 44, 821–824 (2012).

  18. 18

    Banerjee, S., Yandell, B.S. & Yi, N.J. Genetics 179, 2275–2289 (2008).

  19. 19

    Ferreira, M.A.R. & Purcell, S.M. Bioinformatics 25, 132–133 (2009).

  20. 20

    Kim, S. & Xing, E.P. PLoS Genet. 5, e1000587 (2009).

  21. 21

    O'reilly, P.F. et al. PLoS One 7, e34861 (2012).

  22. 22

    Stephens, M. PLoS One 8, e65245 (2013).

  23. 23

    Yang, J.A., Lee, S.H., Goddard, M.E. & Visscher, P.M. Am. J. Hum. Genet. 88, 76–82 (2011).

  24. 24

    Meyer, K. J. Zhejiang Univ. Sci. B 8, 815–821 (2007).

  25. 25

    Gilmour, A.R., Thompson, R. & Cullis, B.R. Biometrics 51, 1440–1450 (1995).

  26. 26

    Meyer, K. PX × AI: Algorithmics for better convergence in restricted maximum likelihood estimation. in 8th World Congress on Genetics Applied to Livestock Production (Belo Horizonte, Brasil, 2006).

  27. 27

    Kang, H.M. et al. Genetics 178, 1709–1723 (2008).

  28. 28

    Kostem, E. & Eskin, E. Am. J. Hum. Genet. 92, 558–564 (2013).

  29. 29

    Runcie, D.E. & Mukherjee, S. Genetics 194, 753–767 (2013).

  30. 30

    Listgarten, J. et al. Nat. Methods 9, 525–526 (2012).

  31. 31

    Bennett, B.J. et al. Genome Res. 20, 281–290 (2010).

  32. 32

    Sabatti, C. et al. Nat. Genet. 41, 35–46 (2009).

  33. 33

    Purcell, S. et al. Am. J. Hum. Genet. 81, 559–575 (2007).

  34. 34

    Astle, W. & Balding, D.J. Stat. Sci. 24, 451–471 (2009).

  35. 35

    Hayes, B.J., Visscher, P.M. & Goddard, M.E. Genet. Res. 91, 143–143 (2009).

Download references

Acknowledgements

This research was supported in part by US National Institutes of Health (NIH) grant HL092206 (principal investigator, Y. Gilad) and NIH grant HG02585 to M.S. We thank A.J. Lusis for making the mouse genotype and phenotype data available, and the NFBC1966 Study Investigators for making the NFBC1966 data available. The NFBC1966 study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the Broad Institute, University of California Los Angeles, University of Oulu, and the National Institute for Health and Welfare in Finland. This manuscript was not prepared in collaboration with investigators of the NFBC1966 study and does not necessarily reflect their views or those of their host institutions.

Author information

X.Z. and M.S. conceived the idea and designed the study. X.Z. developed the algorithms, implemented the software and performed the analyses. X.Z. and M.S. wrote the paper.

Correspondence to Xiang Zhou or Matthew Stephens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, and Supplementary Note (PDF 1889 kb)

Supplementary Software

GEMMA version 0.94. (ZIP 24880 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, X., Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11, 407–409 (2014). https://doi.org/10.1038/nmeth.2848

Download citation

Further reading