Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells

Abstract

In mammals and birds, thermoregulation to conserve body temperature is vital to life. Multiple mechanisms of thermogeneration have been proposed, localized in different subcellular organelles. However, visualizing thermogenesis directly in intact organelles has been challenging. Here we have developed genetically encoded, GFP-based thermosensors (tsGFPs) that enable visualization of thermogenesis in discrete organelles in living cells. In tsGFPs, a tandem formation of coiled-coil structures of the Salmonella thermosensing protein TlpA transmits conformational changes to GFP to convert temperature changes into visible and quantifiable fluorescence changes. Specific targeting of tsGFPs enables visualization of thermogenesis in the mitochondria of brown adipocytes and the endoplasmic reticulum of myotubes. In HeLa cells, tsGFP targeted to mitochondria reveals heterogeneity in thermogenesis that correlates with the electrochemical gradient. Thus, tsGFPs are powerful tools to noninvasively assess thermogenesis in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and biophysical characterization of tsGFP thermosensors.
Figure 2: Fluorescent properties of tsGFP1 in various conditions.
Figure 3: Temperature-dependent fluorescence characteristics of tsGFPs or GFPs targeted to subcellular organelles in HeLa cells.
Figure 4: tsGFP1-mito reveals heterogeneity in mitochondrial thermogenesis in HeLa cells.
Figure 5: Subcellular-targeted tsGFP1-mito visualizes endogenous thermogenesis in brown adipocytes.
Figure 6: Subcellular-targeted tsGFP1-ER visualizes endogenous thermogenesis in myotubes.

Similar content being viewed by others

Accession codes

Accessions

European Nucleotide Archive

References

  1. Nicholls, D.G. & Locke, R.M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  Google Scholar 

  2. Block, B.A. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 535–577 (1994).

    Article  CAS  Google Scholar 

  3. Silva, J.E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86, 435–464 (2006).

    Article  CAS  Google Scholar 

  4. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  Google Scholar 

  5. Matthias, A. et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. J. Biol. Chem. 275, 25073–25081 (2000).

    Article  CAS  Google Scholar 

  6. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  7. de Meis, L. Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Regulation by ATP. J. Biol. Chem. 276, 25078–25087 (2001).

    Article  CAS  Google Scholar 

  8. Meis, L., Arruda, A.P. & Carvalho, D.P. Role of sarco/endoplasmic reticulum Ca2+-ATPase in thermogenesis. Biosci. Rep. 25, 181–190 (2005).

    Article  CAS  Google Scholar 

  9. Paulik, M.A. et al. Development of infrared imaging to measure thermogenesis in cell culture: thermogenic effects of uncoupling protein-2 troglitazone, and β-adrenoceptor agonists. Pharm. Res. 15, 944–949 (1998).

    Article  CAS  Google Scholar 

  10. Schröder, H.J. & Power, G.G. Engine and radiator: fetal and placental interactions for heat dissipation. Exp. Physiol. 82, 403–414 (1997).

    Article  Google Scholar 

  11. Suzuki, M., Tseeb, V., Oyama, K. & Ishiwata, S. Microscopic detection of thermogenesis in a single HeLa cells. Biophys. J. 92, L46–L48 (2007).

    Article  CAS  Google Scholar 

  12. Gota, C., Okabe, K., Funatsu, T., Harada, Y. & Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 131, 2766–2767 (2009).

    Article  CAS  Google Scholar 

  13. Yang, J.-M., Yang, H. & Lin, L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5, 5067–5071 (2011).

    Article  CAS  Google Scholar 

  14. Oyama, K. et al. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells. Lab Chip 12, 1591–1593 (2012).

    Article  CAS  Google Scholar 

  15. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012).

    Article  Google Scholar 

  16. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  17. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  18. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005).

    Article  CAS  Google Scholar 

  19. Hurme, R., Berndt, K.D., Normark, S.J. & Rhen, M. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90, 55–64 (1997).

    Article  CAS  Google Scholar 

  20. Naik, R.R., Kirkpatrick, S.M. & Stone, M.O. The thermostability of an α-helical coiled-coil protein and its potential use in sensor applications. Biosens. Bioelectron. 16, 1051–1057 (2001).

    Article  CAS  Google Scholar 

  21. De Angelis, D.A., Miesenböck, G., Zemelman, B.V. & Rothman, J.E. PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Natl. Acad. Sci. USA 95, 12312–12316 (1998).

    Article  CAS  Google Scholar 

  22. VanEngelenburg, S.B. & Palmer, A.E. Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12, 60–65 (2008).

    Article  CAS  Google Scholar 

  23. Terada, H. The interaction of highly active uncouplers with mitochondria. Biochim. Biophys. Acta 639, 225–242 (1981).

    Article  CAS  Google Scholar 

  24. Ahmad-Junan, S.A., Amos, P.C., Cockerill, G.S., Levett, P.C. & Whiting, D.A. Synthetic studies on electron transport inhibitors related to natural products. Biochem. Soc. Trans. 22, 237–241 (1994).

    Article  CAS  Google Scholar 

  25. Smiley, S.T. et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 88, 3671–3675 (1991).

    Article  CAS  Google Scholar 

  26. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. USA 106, 15651–15656 (2009).

    Article  CAS  Google Scholar 

  27. Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).

    Article  Google Scholar 

  28. Arruda, A.P. et al. Cold tolerance in hypothyroid rabbits: role of skeletal muscle mitochondria and sarcoplasmic reticulum Ca2+ ATPase isoform 1 heat production. Endocrinology 149, 6262–6271 (2008).

    Article  CAS  Google Scholar 

  29. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996).

    Article  CAS  Google Scholar 

  30. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  31. Azzu, V. & Brand, M.D. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci. 35, 298–307 (2010).

    Article  CAS  Google Scholar 

  32. Mall, S. et al. The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J. Biol. Chem. 281, 36597–36602 (2006).

    Article  CAS  Google Scholar 

  33. Bal, N.C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  Google Scholar 

  34. Collins, T.J., Berridge, M.J., Lipp, P. & Bootman, M.D. Mitochondria are morphologically and functionally heterogenous with in cells. EMBO J. 21, 1616–1627 (2002).

    Article  CAS  Google Scholar 

  35. Kuznetsov, A.V. & Margreiter, R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int. J. Mol. Sci. 10, 1911–1929 (2009).

    Article  CAS  Google Scholar 

  36. Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).

    Article  CAS  Google Scholar 

  37. Montell, C. & Caterina, M.J. Thermoregulation: channels that are cool to the core. Curr. Biol. 17, R885–R887 (2007).

    Article  CAS  Google Scholar 

  38. Haneda, T., Okada, N., Nakazawa, N., Kawakami, T. & Danbara, H. Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar choleraesuis. Infect. Immun. 69, 2612–2620 (2001).

    Article  CAS  Google Scholar 

  39. Dayel, M.J., Hom, E.F.Y. & Verkman, A.S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999).

    Article  CAS  Google Scholar 

  40. Wang, Y. & Weiner, H. The presequence of rat liver aldehyde dehydrogenase requires the presence of an α-helix at its N-terminal region which is stabilized by the helix at its C temini. J. Biol. Chem. 268, 4759–4765 (1993).

    CAS  PubMed  Google Scholar 

  41. Schneider, J.P., Lear, J.D. & DeGrado, W.F. A designed buried salt bridge in a heterodimeric coiled-coil. J. Am. Chem. Soc. 119, 5742–5743 (1997).

    Article  CAS  Google Scholar 

  42. Omatsu-Kanbe, M. & Matsuura, H. Inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes. J. Physiol. (Lond.) 521, 601–615 (1999).

    Article  CAS  Google Scholar 

  43. Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).

    Article  CAS  Google Scholar 

  44. Grassi, F., Fucile, S. & Eusebi, F. Ca2+ signaling pathways activated by acetylcholine in mouse C2C12 myotubes. Pflugers Arch. 428, 340–345 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Okada (Kitasato University) for virulence plasmid from Salmonella enterica. Technical support was provided by S. Yano, Y. Suzuki and T. Sakoguchi (Kyoto University). This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan (to S.K. and Y.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.K., T.M. and Y.M. initiated and designed the project. S.K., T.K., R.S. and D.S. performed experiments and analyzed data. M.O.-K. and H.M. supervised brown adipocyte studies. H.I. supervised ATP sensor studies. T.Y., I.H. and T.M. contributed to analysis and interpretation of data. S.K., R.S. and Y.M. wrote the manuscript. Y.M. directed the research. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Yasuo Mori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 2 (PDF 3202 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyonaka, S., Kajimoto, T., Sakaguchi, R. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat Methods 10, 1232–1238 (2013). https://doi.org/10.1038/nmeth.2690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing