Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Practical innovations for high-throughput amplicon sequencing

Abstract

We describe improvements for sequencing 16S ribosomal RNA (rRNA) amplicons, a cornerstone technique in metagenomics. Through unique tagging of template molecules before PCR, amplicon sequences can be mapped to their original templates to correct amplification bias and sequencing error with software we provide. PCR clamps block amplification of contaminating sequences from a eukaryotic host, thereby substantially enriching microbial sequences without introducing bias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular tagging reduces sequence error for a clonal template.
Figure 2: Molecular tagging lowers estimates of alpha diversity and improves technical reproducibility.
Figure 3: PNA specifically blocks amplification of contaminant sequences.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Lozupone, C.A. & Knight, R. Proc. Natl. Acad. Sci. USA 104, 11436–11440 (2007).

    Article  CAS  Google Scholar 

  2. Krueger, F., Andrews, S.R. & Osborne, C.S. PLoS ONE 6, e16607 (2011).

    Article  CAS  Google Scholar 

  3. Patin, N.V., Kunin, V., Lidström, U. & Ashby, M. Microb. Ecol. 65, 709–719 (2013).

    Article  CAS  Google Scholar 

  4. Jabara, C.B., Jones, C.D., Roach, J., Anderson, J.A. & Swanstrom, R. Proc. Natl. Acad. Sci. USA 108, 20166–20171 (2012).

    Article  Google Scholar 

  5. Kivioja, T. et al. Nat. Methods 9, 72–74 (2011).

    Article  Google Scholar 

  6. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K.W. & Vogelstein, B. Proc. Natl. Acad. Sci. USA 108, 9530–9535 (2011).

    Article  Google Scholar 

  7. Faith, J.J. et al. Science 341, 1237439 (2013).

    Article  Google Scholar 

  8. Sheward, D.J., Murrell, B. & Williamson, C. Proc. Natl. Acad. Sci. USA 109, E1330 (2012).

    Article  CAS  Google Scholar 

  9. Lundberg, D.S. et al. Nature 488, 86–90 (2012).

    Article  CAS  Google Scholar 

  10. Bulgarelli, D. et al. Nature 488, 91–95 (2012).

    Article  CAS  Google Scholar 

  11. Benson, A.K. et al. Proc. Natl. Acad. Sci. USA 107, 18933–18938 (2010).

    Article  CAS  Google Scholar 

  12. Caporaso, J.G. et al. ISME J. 6, 1621–1624 (2012).

    Article  CAS  Google Scholar 

  13. Sakai, M. & Ikenaga, M. J. Microbiol. Methods 92, 281–288 (2013).

    Article  CAS  Google Scholar 

  14. Sim, K. et al. PLoS ONE 7, e32543 (2012).

    Article  CAS  Google Scholar 

  15. von Wintzingerode, F., Landt, O., Ehrlich, A. & Göbel, U.B. Appl. Environ. Microbiol. 66, 549–557 (2000).

    Article  CAS  Google Scholar 

  16. Tanaka, T. et al. Int. J. Cancer 126, 651–655 (2010).

    Article  CAS  Google Scholar 

  17. Troedsson, C. et al. Appl. Environ. Microbiol. 74, 4346–4353 (2008).

    Article  CAS  Google Scholar 

  18. Ray, A. & Nordén, B. FASEB J. 14, 1041–1060 (2000).

    Article  CAS  Google Scholar 

  19. Chow, S. et al. Mar. Biotechnol. (NY) 13, 305–313 (2011).

    Article  CAS  Google Scholar 

  20. Terahara, T. et al. PLoS ONE 6, e25715 (2011).

    Article  CAS  Google Scholar 

  21. Magoč, T. & Salzberg, S.L. Bioinformatics 27, 2957–2963 (2011).

    Article  Google Scholar 

  22. Larkin, M.A. et al. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  23. Pei, A.Y. et al. Appl. Environ. Microbiol. 76, 3886–3897 (2010).

    Article  CAS  Google Scholar 

  24. Caporaso, J.G. et al. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tremblay and S.G. Tringe of the Department of Energy Joint Genome Institute for early discussions regarding their independent invention and adoption of frameshifting primers. We thank S.H. Paredes, C. Jabara, S. Biswas and H. Kelkar for essential discussions and S.L. Lebeis, N.W. Breakfield, B.J. Campbell and C.W. Schadt for comments on the manuscript. This work was supported by US National Science Foundation Microbial Systems Biology grant IOS-0958245 to J.L.D. D.S.L. was supported by US National Institutes of Health (NIH) Training Grant T32 GM07092-34. S.Y. was supported by NIH Training Grant T32 GM067553-06. J.L.D. acknowledges the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation for funding (in part via grant GBMF3030 to J.L.D.).

Author information

Authors and Affiliations

Authors

Contributions

D.S.L., P.M., C.D.J. and J.L.D. conceived wet-bench methods. S.Y. designed and wrote the informatics pipeline. D.S.L. and P.M. designed and performed experiments. D.S.L. and S.Y. analyzed data. D.S.L. wrote the manuscript with help from all authors.

Corresponding author

Correspondence to Jeffery L Dangl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Note (PDF 2371 kb)

Supplementary Table 1

Primers, PNA, Regular expressions (XLS 98 kb)

Supplementary Table 2

Sample metadata (XLS 107 kb)

Supplementary Table 3

Primers for Earth Microbiome Project comparison (XLS 32 kb)

Supplementary Table 4

MiSeq sample sheets (XLS 49 kb)

Supplementary Table 5

Contaminant 16S sequences (TXT 61 kb)

Supplementary Table 6

Plant organelle 16S sequences (XLS 102 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundberg, D., Yourstone, S., Mieczkowski, P. et al. Practical innovations for high-throughput amplicon sequencing. Nat Methods 10, 999–1002 (2013). https://doi.org/10.1038/nmeth.2634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing