Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A simple tool to improve pluripotent stem cell differentiation

Abstract

We describe a method to help overcome restrictions on the differentiation propensities of human pluripotent stem cells. Culturing pluripotent stem cells in dimethylsulfoxide (DMSO) activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle and, in more than 25 embryonic and induced pluripotent stem cell lines, improves directed differentiation into multiple lineages. DMSO treatment also improves differentiation into terminal cell types in several cell lines.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: DMSO treatment enhances differentiation in hESC and hiPSC lines.
Figure 2: DMSO treatment improves differentiation into all germ layers across multiple hESC and hiPSC lines.
Figure 3: DMSO-treated cells have activated retinoblastoma protein (Rb) and an increased proportion of early G1-stage cells.

References

  1. Osafune, K. et al. Nat. Biotechnol. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  2. Bock, C. et al. Cell 144, 439–452 (2011).

    Article  CAS  Google Scholar 

  3. Smith, A.G. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    Article  CAS  Google Scholar 

  4. Orford, K.W. & Scadden, D.T. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  Google Scholar 

  5. Conklin, J.F. & Sage, J. J. Cell Biochem. 108, 1023–1030 (2009).

    Article  CAS  Google Scholar 

  6. Ben-David, U. & Benvenisty, N. Nat. Rev. Cancer 11, 268–277 (2011).

    Article  CAS  Google Scholar 

  7. Hartwell, L.H. & Weinert, T.A. Science 246, 629–634 (1989).

    Article  CAS  Google Scholar 

  8. Murray, A.W. & Kirschner, M.W. Nature 339, 275–280 (1989).

    Article  CAS  Google Scholar 

  9. Pardee, A.B. Science 246, 603–608 (1989).

    Article  CAS  Google Scholar 

  10. Weinberg, R.A. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  11. Chen, S. et al. Nat. Chem. Biol. 5, 258–265 (2009).

    Article  CAS  Google Scholar 

  12. Sawai, M., Takase, K., Teraoka, H. & Tsukada, K. Exp. Cell Res. 187, 4–10 (1990).

    Article  CAS  Google Scholar 

  13. Teraoka, H., Mikoshiba, M., Takase, K., Yamamoto, K. & Tsukada, K. Exp. Cell Res. 222, 218–224 (1996).

    Article  CAS  Google Scholar 

  14. Ponzio, G. et al. Oncogene 17, 1159–1166 (1998).

    Article  CAS  Google Scholar 

  15. Fiore, M. & Degrassi, F. Exp. Cell Res. 251, 102–110 (1999).

    Article  CAS  Google Scholar 

  16. Yu, Z.W. & Quinn, P.J. Biosci. Rep. 14, 259–281 (1994).

    Article  CAS  Google Scholar 

  17. Pal, R., Mamidi, M., Das, A. & Bhonde, R. Arch. Toxicol. 86, 651–661 (2012).

    Article  CAS  Google Scholar 

  18. D'Amour, K.A. et al. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  CAS  Google Scholar 

  19. Kroon, E. et al. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  Google Scholar 

  20. Borowiak, M. & Melton, D.A. Curr. Opin. Cell Biol. 21, 727–732 (2009).

    Article  CAS  Google Scholar 

  21. Cowan, C.A. et al. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  Google Scholar 

  22. Takahashi, K. et al. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  23. Chen, P.L., Scully, P., Shew, J.Y., Wang, J.Y. & Lee, W.H. Cell 58, 1193–1198 (1989).

    Article  CAS  Google Scholar 

  24. Sosa-García, B. et al. PLoS ONE 5, e13954 (2010).

    Article  Google Scholar 

  25. Ruiz, S. et al. Curr. Biol. 21, 45–52 (2011).

    Article  CAS  Google Scholar 

  26. Sela, Y., Molotski, N., Golan, S., Itskovitz-Eldor, J. & Soen, Y. Stem Cells 30, 1097–1108 (2012).

    Article  CAS  Google Scholar 

  27. Jacks, T. et al. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  28. Slack, R.S. et al. J. Cell Biol. 129, 779–788 (1995).

    Article  CAS  Google Scholar 

  29. Nguyen, D.X., Baglia, L.A., Huang, S.-M., Baker, C.M. & McCance, D.J. EMBO J. 23, 1609–1618 (2004).

    Article  CAS  Google Scholar 

  30. Watanabe, K. et al. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  31. Boulting, G.L. et al. Nat. Biotechnol. 29, 279–286 (2011).

    Article  CAS  Google Scholar 

  32. Maehr, R. et al. Proc. Natl. Acad. Sci. USA 106, 15768–15773 (2009).

    Article  CAS  Google Scholar 

  33. Chambers, S.M. et al. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  Google Scholar 

  34. Zhang, P. et al. Blood 111, 1933–1941 (2008).

    Article  CAS  Google Scholar 

  35. Lian, X. et al. Proc. Natl. Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  Google Scholar 

  36. Rezania, A. et al. Diabetes 60, 239–247 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Scadden for her excellent technical support; R. Maehr, P. Makhijani and J. Millman of Harvard University for providing many of the hiPSC lines; K. Lam for assistance with the Cellomics high-content screening system; and A. Meissner, K. Eggan, D. Cohen, R. Maehr, J. Rivera-Feliciano, B. Blum, J. Sneddon and Q. Peterson for their comments on the manuscript. This work was supported by the Harvard Stem Cell Institute, the Howard Hughes Medical Institute, the Leona M. and Harry B. Helmsley Charitable Trust, NovoNordisk and the US National Institutes of Health (1R24DK092758 and 1U01HL10040804).

Author information

Authors and Affiliations

Authors

Contributions

S.C. and D.A.M. conceived and designed the research, analyzed the data and wrote the manuscript. S.C., F.W.P., C.H., A.K. and A.R. performed the experiments.

Corresponding author

Correspondence to Douglas A Melton.

Ethics declarations

Competing interests

A.R. is an employee of BetaLogics, a division of Janssen Research & Development that is developing commercial products based upon pancreatic differentiation of human embryonic stem cells.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2 and Supplementary Note (PDF 2913 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 1 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 2020 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 2 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 13785 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 3 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 6905 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 4 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 5436 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chetty, S., Pagliuca, F., Honore, C. et al. A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10, 553–556 (2013). https://doi.org/10.1038/nmeth.2442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing