Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms


We established a conditional site-specific recombination system based on dimerizable Cre recombinase−mediated recombination in the apicomplexan parasite Toxoplasma gondii. Using a new single-vector strategy that allows ligand-dependent, efficient removal of a gene of interest, we generated three knockouts of apicomplexan genes considered essential for host-cell invasion. Our findings uncovered the existence of an alternative invasion pathway in apicomplexan parasites.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Conditional Cre recombinase system in T. gondii.
Figure 2: Using the DiCre system to dissect the invasion machinery.


  1. Herm-Götz, A. et al. Nat. Methods 4, 1003–1005 (2007).

    Article  Google Scholar 

  2. Meissner, M., Breinich, M.S., Gilson, P.R. & Crabb, B.S. Curr. Opin. Microbiol. 10, 349–356 (2007).

    CAS  Article  Google Scholar 

  3. Meissner, M., Schluter, D. & Soldati, D. Science 298, 837–840 (2002).

    CAS  Article  Google Scholar 

  4. Buguliskis, J.S., Brossier, F., Shuman, J. & Sibley, L.D. PLoS Pathog. 6, e1000858 (2010).

    Article  Google Scholar 

  5. Starnes, G.L., Coincon, M., Sygusch, J. & Sibley, L.D. Cell Host Microbe 5, 353–364 (2009).

    CAS  Article  Google Scholar 

  6. Daher, W. & Soldati-Favre, D. Curr. Opin. Microbiol. 12, 408–414 (2009).

    CAS  Article  Google Scholar 

  7. Plattner, F. et al. Cell Host Microbe 3, 77–87 (2008).

    CAS  Article  Google Scholar 

  8. Huynh, M.H. & Carruthers, V.B. PLoS Pathog. 2, e84 (2006).

    Article  Google Scholar 

  9. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J.P. Nucleic Acids Res. 31, e131 (2003).

    Article  Google Scholar 

  10. Bulina, M.E. et al. Nat. Protoc. 1, 947–953 (2006).

    CAS  Article  Google Scholar 

  11. Skillman, K.M. et al. PLoS Pathog. 7, e1002280 (2011).

    CAS  Article  Google Scholar 

  12. Soldati, D.B. Mol. Cell. Biol. 15, 87–93 (1995).

    CAS  Article  Google Scholar 

  13. Shaw, M.K., Compton, H.L., Roos, D.S. & Tilney, L.G. J. Cell Sci. 113, 1241–1254 (2000).

    CAS  PubMed  Google Scholar 

  14. Fichera, M.E. & Roos, D.S. Nature 390, 407–409 (1997).

    CAS  Article  Google Scholar 

  15. Hettmann, C. et al. Mol. Biol. Cell 11, 1385–1400 (2000).

    CAS  Article  Google Scholar 

  16. Donald, R.G. & Roos, D.S. Proc. Natl. Acad. Sci. USA 90, 11703–11707 (1993).

    CAS  Article  Google Scholar 

  17. Brecht, S., Erdhart, H., Soete, M. & Soldati, D. Gene 234, 239–247 (1999).

    CAS  Article  Google Scholar 

  18. Huynh, M.H. & Carruthers, V.B. Eukaryot. Cell 8, 530–539 (2009).

    CAS  Article  Google Scholar 

  19. Donald, R.G., Carter, D., Ullman, B. & Roos, D.S. J. Biol. Chem. 271, 14010–14019 (1996).

    CAS  Article  Google Scholar 

  20. Kim, K., Soldati, D. & Boothroyd, J.C. Science 262, 911–914 (1993).

    CAS  Article  Google Scholar 

  21. Black, M.W., Arrizabalaga, G. & Boothroyd, J.C. Mol. Cell. Biol. 20, 9399–9408 (2000).

    CAS  Article  Google Scholar 

Download references


We thank D. Soldati-Favre (University of Geneva), C.J. Beckers (University of North Carolina, Chapel Hill), A. Scherf (Pasteur Institute, Paris), J.F. Dubremetz (University of Montpellier), V. Carruthers (University of Michigan, Ann Arbor), B. Striepen (University of Georgia, Athens) and D.L. Sibley (Washington University) for sharing reagents, and members of the FACS facility of the Institute of Infection, Immunity and Inflammation at the University of Glasgow for their support. This work was supported by the Wellcome Trust. M.M. is funded by a Wellcome Trust Senior Fellowship (087582/Z/08/Z). N.A. is supported by an EviMalaR (European FP7/2007-2013, grant number 242095) PhD fellowship, and S.E. was funded via Signalling in life cycle stages of malaria parasites (MALSIG) (European FP7/2009-2012, grant number 223044). The Wellcome Trust Centre for Molecular Parasitology is supported by core funding from the Wellcome Trust (085349).

Author information

Authors and Affiliations



N.A. established the DiCre system and generated and analyzed the myoA knockout parasites. A.J.J. generated and analyzed the mic2 knockout. S.E. generated and analyzed the conditional act1 knockout. N.J. and J.-P.H. shared confidential information for the establishment of the DiCre system. M.M. initiated and guided this study. M.M., A.J.J., N.A. and S.E. wrote the manuscript.

Corresponding author

Correspondence to Markus Meissner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Discussion, Supplementary Note (PDF 12842 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andenmatten, N., Egarter, S., Jackson, A. et al. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10, 125–127 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing