Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries

Abstract

We introduce two large-scale resources for functional analysis of microRNA (miRNA): a decoy library for inhibiting miRNA function and a sensor library for monitoring microRNA activity. To take advantage of the sensor library, we developed a high-throughput assay called Sensor-seq to simultaneously quantify the activity of hundreds of miRNAs. Using this approach, we show that only the most abundant miRNAs in a cell mediate target suppression. Over 60% of detected miRNAs had no discernible activity, which indicated that the functional 'miRNome' of a cell is considerably smaller than currently inferred from profiling studies. Moreover, some highly expressed miRNAs exhibited relatively weak activity, which in some cases correlated with a high target-to-miRNA ratio or increased nuclear localization of the miRNA. Finally, we show that the miRNA decoy library can be used for pooled loss-of-function studies. These tools are valuable resources for studying miRNA biology and for miRNA-based therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensor-seq provides a rapid, high-throughput means for assessing miRNA activity.
Figure 2: Correlating miRNA abundance and target suppression.
Figure 3: miRNAs have different effective concentrations.
Figure 4: miRNA decoy library enables pooled loss-of-function screens.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  2. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  3. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  4. Brown, B.D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10, 578–585 (2009).

    Article  CAS  Google Scholar 

  5. Mansfield, J.H. et al. MicroRNA-responsive ′sensor′ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat. Genet. 36, 1079–1083 (2004).

    Article  CAS  Google Scholar 

  6. Gottwein, E., Cai, X. & Cullen, B.R. A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J. Virol. 80, 5321–5326 (2006).

    Article  CAS  Google Scholar 

  7. Brown, B.D., Venneri, M.A., Zingale, A., Sergi Sergi, L. & Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. 12, 585–591 (2006).

    Article  CAS  Google Scholar 

  8. Kelly, E.J., Hadac, E.M., Greiner, S. & Russell, S.J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med. 14, 1278–1283 (2008).

    Article  CAS  Google Scholar 

  9. Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K. & Andino, R. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4, 239–248 (2008).

    Article  CAS  Google Scholar 

  10. Gentner, B. et al. Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci. Transl. Med. 2, 58ra84 (2010).

    Article  CAS  Google Scholar 

  11. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  Google Scholar 

  12. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  13. Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009).

    Article  CAS  Google Scholar 

  14. Haraguchi, T., Ozaki, Y. & Iba, H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 37, e43 (2009).

    Article  Google Scholar 

  15. Brown, B.D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467 (2007).

    Article  CAS  Google Scholar 

  16. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  17. Baccarini, A. et al. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr. Biol. 21, 369–376 (2011).

    Article  CAS  Google Scholar 

  18. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  19. Jayaprakash, A.D., Jabado, O., Brown, B.D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    Article  CAS  Google Scholar 

  20. Franco-Zorrilla, J.M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  Google Scholar 

  21. Jones, M.R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163 (2009).

    Article  CAS  Google Scholar 

  22. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  Google Scholar 

  23. Arvey, A., Larsson, E., Sander, C., Leslie, C.S. & Marks, D.S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).

    Article  Google Scholar 

  24. Garcia, D.M. et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).

    Article  CAS  Google Scholar 

  25. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  Google Scholar 

  26. Loya, C.M., Lu, C.S., Van Vactor, D. & Fulga, T.A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat. Methods 6, 897–903 (2009).

    Article  CAS  Google Scholar 

  27. Xie, J. et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat. Methods 9, 403–409 (2012).

    Article  CAS  Google Scholar 

  28. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).

    Article  CAS  Google Scholar 

  29. Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

    Article  CAS  Google Scholar 

  30. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009).

    Article  CAS  Google Scholar 

  31. Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  Google Scholar 

  32. Haley, B. & Zamore, P.D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  Google Scholar 

  33. Hwang, H.W., Wentzel, E.A. & Mendell, J.T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    Article  CAS  Google Scholar 

  34. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

    Article  CAS  Google Scholar 

  35. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

    Article  CAS  Google Scholar 

  36. Ni, J.Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    Article  CAS  Google Scholar 

  37. Cleary, M.A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods 1, 241–248 (2004).

    Article  CAS  Google Scholar 

  38. Bassik, M.C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

    Article  CAS  Google Scholar 

  39. Amendola, M., Venneri, M.A., Biffi, A., Vigna, E. & Naldini, L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116 (2005).

    Article  CAS  Google Scholar 

  40. Baccarini, A. & Brown, B.D. Monitoring microRNA activity and validating microRNA targets by reporter-based approaches. Methods Mol. Biol. 667, 215–233 (2010).

    Article  CAS  Google Scholar 

  41. Malone, C.D. et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).

    Article  CAS  Google Scholar 

  42. Jayaprakash, A.D., Jabado, O., Brown, B.D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    Article  CAS  Google Scholar 

  43. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  Google Scholar 

  44. Girard, A., Sachidanandam, R., Hannon, G.J. & Carmell, M.A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    Article  Google Scholar 

  45. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  Google Scholar 

  46. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  47. Lindenbach, B.D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  Google Scholar 

  48. Narbus, C.M. et al. HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J. Virol. 85, 12087–12092 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Naldini, B. Gentner, E. Bernstein, E.C. Lai, A. Ventura and A. Chess for helpful discussions, and H. Iba (University of Tokyo) for pmU6-TuD-shuttle. We also thank the Mount Sinai Genomics Core Facility for deep sequencing. Oligo libraries were accessed through a collaborative technology program from Agilent Technologies. B.D.B. is supported by a US National Institute of Health Pathfinder Award (DP2DK083052-01) and funding from the Juvenile Diabetes Research Foundation (JDRF-17-2010-770). M.J.E. is supported by the Pew Charitable Funds and US National Institute of Health (R56AI091792). G.M. is supported by a Helmsley Trust Award.

Author information

Authors and Affiliations

Authors

Contributions

G.M., A.B. and A.R. designed and performed research and analyzed data. N.T. and A.D.J. performed research. B.I. and M.J.E. designed and performed research. R.S. designed the project and analyzed data. B.D.B. designed and coordinated the project and analyzed data.

Corresponding author

Correspondence to Brian D Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullokandov, G., Baccarini, A., Ruzo, A. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 9, 840–846 (2012). https://doi.org/10.1038/nmeth.2078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing