Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toward the blood-borne miRNome of human diseases

Abstract

In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bubble plot of miRNAs that are up- or downregulated in several diseases.
Figure 2: Representative example for the physical proximity of a significantly deregulated miRNA and a known SNP.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. 1

    Taft, R.J., Pang, K.C., Mercer, T.R., Dinger, M. & Mattick, J.S. J. Pathol. 220, 126–139 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Mitchell, P.S. et al. Proc. Natl. Acad. Sci. USA 105, 10513–10518 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Otaegui, D. et al. PLoS ONE 4, e6309 (2009).

    Article  Google Scholar 

  4. 4

    Vorwerk, S. et al. New Biotechnol. 25, 142–149 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Lu, M. et al. PLoS ONE 3, e3420 (2008).

    Article  Google Scholar 

  6. 6

    Backes, C. et al. Nucleic Acids Res. 35, W186–W192 (2007).

    Article  Google Scholar 

  7. 7

    Backes, C., Meese, E., Lenhof, H.P. & Keller, A. Nucleic Acids Res. 38, 4476–4486 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Keller, A. et al. BMC Cancer 9, 353 (2009).

    Article  Google Scholar 

  9. 9

    Leidinger, P. et al. BMC Cancer 10, 262 (2010).

    Article  Google Scholar 

  10. 10

    Meder, B. et al. Basic Res. Cardiol. 106, 13–23 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Roth, P. et al. J. Neurochem. 18, 449–457 (2011).

    Article  Google Scholar 

  12. 12

    Petriv, O.I., Hansen, C.L., Humphries, R.K. & Kuchenbauer, F. Cell Cycle 10, 2–3 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Garzon, R. et al. Blood 111, 3183–3189 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Griffiths-Jones, S. Methods Mol. Biol. 342, 129–138 (2006).

    CAS  PubMed  Google Scholar 

  15. 15

    Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. Bioinformatics 19, 185–193 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Edgar, R., Domrachev, M. & Lash, A.E. Nucleic Acids Res. 30, 207–210 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Behav. Brain Res. 125, 279–284 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Vapnik, V. The Nature of Statistical Learning Theory. 2nd edn. (Springer, New York, 2000).

  19. 19

    Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008).

  20. 20

    Kanehisa, M. & Goto, S. Nucleic Acids Res 28, 27–30 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. Flachsbart, B. Noack and B. Loos for support. This work was financially supported by the German Ministry of Research Education (Bundesministerium für Bildung und Forschung 01EX0806), Hedwig Stalter Foundation, Homburger Forschungsförderungsprogramm and by the Deutsche Forschungsgemeinschaft (LE2783/1-1). Infrastructure support was received from the Deutsche Forschungsgemeinschaft cluster of excellence 'Inflammation at Interfaces'.

Author information

Affiliations

Authors

Contributions

A.K. initiated the study; E.M., P.R., J.M-Q., A.B., P.S., V.B., C.S., M.B., M.W.B., J.W., S.F.M.H., J.D., S.S., H.A.K., W.R., B.M., J.D.H. and A.F. designed the study; A.K., P.L., A.E., H.A.K., W.R., B.M., J.D.H., A.F., E.M., S.S. and B.V. wrote the manuscript; A.K., J.H., C.B., A.W., I.A., B.V. and H-P.L. analyzed data; P.L., A.B., C.T., A.E., N.G., K.O., J.W., T.H., G.J., H.D., A.S., B.W., B.K., N.G., A.N., V.B., B.V., S.H. and B.M. performed experiments; C.T., K.O., T.H., K.R., H.H., J.H., G.J., H.D., A.S., B.W., B.K., J.R., S.U.J., N.G., M.S., M.W.B., J.W. and S.F.M.H. collected samples.

Corresponding author

Correspondence to Andreas Keller.

Ethics declarations

Competing interests

A.K., C.B., A.W., I.A., P.S., V.B., C.S., M.B., MS have been affiliated with febit, a biotech company specializing in microarray screening.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–8 (PDF 5051 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keller, A., Leidinger, P., Bauer, A. et al. Toward the blood-borne miRNome of human diseases. Nat Methods 8, 841–843 (2011). https://doi.org/10.1038/nmeth.1682

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing