Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast, three-dimensional super-resolution imaging of live cells


We report super-resolution fluorescence imaging of live cells with high spatiotemporal resolution using stochastic optical reconstruction microscopy (STORM). By labeling proteins either directly or via SNAP tags with photoswitchable dyes, we obtained two-dimensional (2D) and 3D super-resolution images of living cells, using clathrin-coated pits and the transferrin cargo as model systems. Bright, fast-switching probes enabled us to achieve 2D imaging at spatial resolutions of 25 nm and temporal resolutions as fast as 0.5 s. We also demonstrated live-cell 3D super-resolution imaging. We obtained 3D spatial resolution of 30 nm in the lateral direction and 50 nm in the axial direction at time resolutions as fast as 1–2 s with several independent snapshots. Using photoswitchable dyes with distinct emission wavelengths, we also demonstrated two-color 3D super-resolution imaging in live cells. These imaging capabilities open a new window for characterizing cellular structures in living cells at the ultrastructural level.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: STORM images of transferrin in live cells.
Figure 2: 3D STORM images of CCPs labeled with photoswitchable cyanine dyes via a SNAP tag in live cells.
Figure 3: Two-color 3D STORM images of CCPs and transferrin in live cells.
Figure 4: Comparison of CCPs labeled with various probes.


  1. 1

    Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Klar, T.A. & Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 1599–1609 (2002).

    Article  Google Scholar 

  5. 5

    Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Hein, B., Willig, K.I. & Hell, S.W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Hess, S.T. et al. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104, 17370–17375 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Subach, F.V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153–159 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Biteen, J.S. et al. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5, 947–949 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Edn. Engl. 48, 6903–6908 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nat. Methods 7, 717–719 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Testa, I. et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys. J. 99, 2686–2694 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Klein, T. et al. Live-cell dSTORM with SNAP-tag fusion proteins. Nat. Methods 8, 7–9 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Zhuang, X. Nano-imaging with Storm. Nat. Photonics 3, 365–367 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Juette, M.F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Pavani, S.R.P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Tang, J., Akerboom, J., Vaziri, A., Looger, L.L. & Shank, C.V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc. Natl. Acad. Sci. USA 107, 10068–10073 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Dempsey, G.T. et al. Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131, 18192–18193 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Sako, Y. & Kusumi, A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574 (1995).

    CAS  Article  Google Scholar 

  34. 34

    Rust, M.J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol. 11, 567–573 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Gaidarov, I., Santini, F., Warren, R.A. & Keen, J.H. Spatial control of coated-pit dynamics in living cells. Nat. Cell Biol. 1, 1–7 (1999).

    CAS  Article  Google Scholar 

  37. 37

    McNeil, P.L. & Warder, E. Glass beads load macromolecules into living cells. J. Cell Sci. 88, 669–678 (1987).

    PubMed  Google Scholar 

  38. 38

    McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Fernandez-Suarez, M. & Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Lakadamyali, M., Rust, M.J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Nugent-Glandorf, L. & Perkins, T.T. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt. Lett. 29, 2611–2613 (2004).

    Article  Google Scholar 

Download references


We thank M. Davidson (Florida State University) and L. Looger (Janelia Farm) for Eos fluorescent protein plasmids. This work is supported in part by the US National Institutes of Health (to X.Z.) and a Collaborative Innovation Award (43667) from Howard Hughes Medical Institute. S.-H.S. is in part supported by the Mary Fieser fellowship. X.Z. receives support from the Howard Hughes Medical Institute.

Author information




X.Z. conceived of the project. S.A.J., S.-H.S. and X.Z. designed the experiments. S.A.J. and S.-H.S. performed all experiments and analysis. J.H. assisted with bead-loading experiments. S.A.J., S.-H.S. and X.Z. wrote the manuscript.

Corresponding authors

Correspondence to Sang-Hee Shim or Xiaowei Zhuang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 (PDF 2966 kb)

Supplementary Movie 1

A differential interference contrast movie of a cell under the STORM imaging conditions. A BS-C-1 cell was placed in imaging buffer and irradiated with a 657-nm laser at 15 kW cm−2 (the maximum laser excitation intensity used in this work). The recording of the movie started immediately after the laser illumination was turned on. The red area corresponds to the illuminated region, which is equivalent to the typical beam size used in STORM experiments. The intracellular vesicles continue to move and cell edge probes its environment throughout the imaging time under this condition. Scale bar, 10 μm. (MOV 5637 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, S., Shim, SH., He, J. et al. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8, 499–505 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing