Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combining quantitative proteomics data processing workflows for greater sensitivity

Abstract

We here describe a normalization method to combine quantitative proteomics data. By merging the output of two popular quantification software packages, we obtained a 20% increase (on average) in the number of quantified human proteins without suffering from a loss of quality. Our integrative workflow is freely available through our user-friendly, open-source Rover software (http://compomics-rover.googlecode.com/).

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Analysis of different quantification workflows for dataset 1, experiment A.
Figure 2: Quality control of the combined results from multiple data-processing workflows for dataset 1, experiment A.

References

  1. Domon, B. & Aebersold, R. Science 312, 212–217 (2006).

    CAS  Article  Google Scholar 

  2. Vaudel, M., Sickmann, A. & Martens, L. Proteomics 10, 650–670 (2010).

    CAS  Article  Google Scholar 

  3. Mueller, L.N., Brusniak, M., Mani, D.R. & Aebersold, R. J. Proteome Res. 7, 51–61 (2008).

    CAS  Article  Google Scholar 

  4. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  Google Scholar 

  5. Mortensen, P. et al. J. Proteome Res. 9, 393–403 (2010).

    CAS  Article  Google Scholar 

  6. Park, S.K., Venable, J.D., Xu, T. & Yates, J.R. III. Nat. Methods 5, 319–322 (2008).

    CAS  Article  Google Scholar 

  7. Colaert, N., Vandekerckhove, J., Martens, L. & Gevaert, K. in Methods in Molecular Biology: Gel-Free Proteomics: Methods and Protocols (eds. Gevaert, K. and Vandekerckhove, J.) (Humana Press; in the press).

  8. Yu, W. et al. Proteomics 10, 1172–1189 (2010).

    CAS  Article  Google Scholar 

  9. Jones, A.R., Siepen, J.A., Hubbard, S.J. & Paton, N.W. Proteomics 9, 1220–1229 (2009).

    CAS  Article  Google Scholar 

  10. Searle, B.C., Turner, M. & Nesvizhskii, A.I. J. Proteome Res. 7, 245–253 (2008).

    CAS  Article  Google Scholar 

  11. Ong, S.-E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  Article  Google Scholar 

  12. Gevaert, K. et al. Mol. Cell. Proteomics 1, 896–903 (2002).

    CAS  Article  Google Scholar 

  13. Bartke, T. et al. Cell 143, 470–484 (2010).

    CAS  Article  Google Scholar 

  14. Yang, Y.H. et al. Nucleic Acids Res. 30, E15 (2002).

    Article  Google Scholar 

  15. Colaert, N., Helsens, K., Impens, F., Vandekerckhove, J. & Gevaert, K. Proteomics 10, 1226–1229 (2010).

    CAS  Article  Google Scholar 

  16. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Electrophoresis 20, 3551–3567 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C.V.H. is supported by a grant of the Research Foundation–Flanders (project 3G003908). We thank B. Ghesquière, F. Impens and E. Timmerman for providing prepublication access during algorithm development to their now published data. We acknowledge the support of Ghent University (Multidisciplinary Research Partnership “Bioinformatics: from nucleotides to networks”) and EU 7th Framework Programme (contract 262067-PRIME-XS). K.G. and J.V. acknowledge funding from the Fund for Scientific Research–Flanders (Belgium) (project G.0042.07), the Concerted Research Actions (project BOF07/GOA/012) from Ghent University and the Interuniversity Attraction Poles (IUAP06).

Author information

Authors and Affiliations

Authors

Contributions

N.C. developed the combination algorithm and wrote the first draft of the manuscript. C.V.H. contributed to algorithm development and to manuscript writing. S.D. contributed to algorithm development and manuscript writing. A.S. assisted with data processing and manuscript writing. J.V. and K.G. supervised part of the work and contributed to manuscript writing. L.M. supervised the work, contributed to algorithm development and wrote the manuscript.

Corresponding author

Correspondence to Lennart Martens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1–2, Supplementary Data (PDF 11502 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colaert, N., Van Huele, C., Degroeve, S. et al. Combining quantitative proteomics data processing workflows for greater sensitivity. Nat Methods 8, 481–483 (2011). https://doi.org/10.1038/nmeth.1604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1604

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing