Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A more efficient method to generate integration-free human iPS cells

Abstract

We report a simple method, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors. We generated human iPSCs from multiple donors, including two putative human leukocyte antigen (HLA)-homozygous donors who match 20% of the Japanese population at major HLA loci; most iPSCs are integrated transgene-free. This method may provide iPSCs suitable for autologous and allologous stem-cell therapy in the future.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Establishment of human iPSCs.
Figure 2: Characterization of pla-iPSC clones.
Figure 3: Estimated coverage of the Japanese population by HLA homozygous donors.

References

  1. Okita, K., Ichisaka, T. & Yamanaka, S. Nature 448, 313–317 (2007).

    CAS  Article  Google Scholar 

  2. Zhou, W. & Freed, C.R. Stem Cells 27, 2667–2674 (2009).

    CAS  Article  Google Scholar 

  3. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Proc. Jpn. Acad. B 85, 348–362 (2009).

    CAS  Article  Google Scholar 

  4. Woltjen, K. et al. Nature 458, 766–770 (2009).

    CAS  Article  Google Scholar 

  5. Jia, F. et al. Nat. Methods 7, 197–199 (2010).

    CAS  Article  Google Scholar 

  6. Yu, J. et al. Science 324, 797–801 (2009).

    CAS  Article  Google Scholar 

  7. Kim, D. et al. Cell Stem Cell 4, 472–476 (2009).

    CAS  Article  Google Scholar 

  8. Warren, L. et al. Cell Stem Cell 7, 618–630 (2010).

    CAS  Article  Google Scholar 

  9. Hong, H. et al. Nature 460, 1132–1135 (2009).

    CAS  Article  Google Scholar 

  10. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T. & Yamanaka, S. Proc. Natl. Acad. Sci. USA 107, 14152–14157 (2010).

    CAS  Article  Google Scholar 

  11. Tamaoki, N. et al. J. Dent. Res. 89, 773–778 (2010).

    CAS  Article  Google Scholar 

  12. Nakatsuji, N., Nakajima, F. & Tokunaga, K. Nat. Biotechnol. 26, 739–740 (2008).

    CAS  Article  Google Scholar 

  13. Tsuji, O. et al. Proc. Natl. Acad. Sci. USA 107, 12704–12709 (2010).

    CAS  Article  Google Scholar 

  14. Takemoto, S.K., Terasaki, P.I., Gjertson, D.W. & Cecka, J.M. N. Engl. J. Med. 343, 1078–1084 (2000).

    CAS  Article  Google Scholar 

  15. Aydingoz, S.E. et al. Hum. Immunol. 68, 491–499 (2007).

    CAS  Article  Google Scholar 

  16. McMahon, A.P. & Bradley, A. Cell 62, 1073–1085 (1990).

    CAS  Article  Google Scholar 

  17. Takahashi, K. et al. Cell 131, 861–872 (2007).

    CAS  Article  Google Scholar 

  18. Niwa, H., Yamamura, K. & Miyazaki, J. Gene 108, 193–199 (1991).

    CAS  Article  Google Scholar 

  19. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Science 322, 949–953 (2008).

    CAS  Article  Google Scholar 

  20. Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. J. Neurosci. Res. 89, 117–126 (2010).

    Article  Google Scholar 

  21. Kawasaki, H. et al. Proc. Natl. Acad. Sci. USA 99, 1580–1585 (2002).

    CAS  Article  Google Scholar 

  22. Osakada, F. et al. J. Cell Sci. 122, 3169–3179 (2009).

    CAS  Article  Google Scholar 

  23. Itoh, Y. et al. Immunogenetics 57, 717–729 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Takahashi, T. Aoi and Y. Yoshida for scientific discussion; M. Narita, T. Ichisaka, M. Ohuchi, M. Nishikawa and N. Takizawa for technical assistance; R. Kato, E. Nishikawa, S. Takeshima, Y. Ohtsu and H. Hasaba for administrative assistance; and H. Niwa (RIKEN) and J. Miyazaki (Osaka University) for the CAG promoter. This study was supported in part by a grant from the Program for Promotion of Fundamental Studies in Health Sciences of National Institute of Biomedical Innovation, a grant from the Leading Project of Ministry of Education, Culture, Sports, Science and Technology (MEXT), a grant from Funding Program for World-Leading Innovative Research and Development on Science and Technology (FIRST Program) of Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science and MEXT (to S.Y.) and Senri Life Science Foundation (to K.O.). H.H. is supported by a Japanese government (MEXT) scholarship.

Author information

Authors and Affiliations

Authors

Contributions

K.O. and S.Y. conceived the project and wrote the manuscript. K.O. constructed the vectors with H.H., M.N. and K. Tanabe, and conducted most of the experiments with Y.M., Y. S. and A.O. A.M. and J.T. carried out the differentiation experiment into dopaminergic neurons. S.O. and M.T. performed differentiation into retinal pigment epithelial cells. K. Tezuka., T.S. and T.K. established dental pulp cell lines. H.S. performed HLA haplotyping in Japanese population and supervised HLA analysis.

Corresponding authors

Correspondence to Keisuke Okita or Shinya Yamanaka.

Ethics declarations

Competing interests

K.O., M.N. and S.Y. are filing a patent application to Japan, US and EU based on the results reported in this paper (PCT/JP2010/063733). S.Y. is a member of Scientific Advisory Board for iPS Academia Japan Inc. and iPierian Inc., which manage the patents.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–7 and 9, 10 (PDF 1911 kb)

Supplementary Table 8

Haplotype frequency for HLA-A, HLA-B and HLA-DRB1 loci in Japanese population. (XLS 395 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okita, K., Matsumura, Y., Sato, Y. et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 8, 409–412 (2011). https://doi.org/10.1038/nmeth.1591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1591

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing